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ABSTRACT
Voice user interfaces (VUIs) have been adopted in many IoT and
mobile devices in daily life. VUIs provide a good user experience
with lower-cost hardware (i.e., microphone) and higher through-
put (compared with keyboard and touchscreen). Currently, identity
authentication and receiving commands are the two most common
interactions through VUIs, leaving physiological information in the
voice unexploited. Recognizing this untapped potential, we propose
VocalHR to extend VUIs beyond voice commands to heart activity
sensing without additional hardware. VocalHR is built upon the
voice-heart modulation effect, which is rooted in the cardiac ac-
tivities’ impacts on the behavior of the vocal organ during voice
production. VocalHR captures voice features of cardiac activity in
multiple voice organs and proposes a deep learning pipeline to
transform features into cardiac activities. As this is the first study
exploring voice-based heart activity sensing, we conducted exten-
sive experiments on 43 demographically diverse subjects to verify
the intrinsic link between voice and heart activities. On average,
VocalHR can achieve less than 11.1% normalized sensing error on
the heart event timing. Our further evaluation shows VocalHR is
robust to different microphone specifications and varying speech
rates.
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Figure 1: VocalHR enables new functions for VUIs by export-
ing heart activities from voice.

1 INTRODUCTION
The ever-emerging smart devices in our daily life have witnessed
a dramatic growth of voice-user interfaces (VUIs). VUIs enable a
more intuitive and low-cost way to operate said devices via natural
speech and microphones. They are applied to various scenarios
(e.g., message dictation and voice search) to improve operational
efficiency. A recent report valued the global VUIs market size to be
13.65 billion dollars in 2020, registering a compound annual growth
rate of 21.5% from 2021-2030 [1].

At present, VUIs are tightly bonded to speech commands, while
physiological information remains largely unexplored. Considering
how promising VUIs is, previous studies recognized this opportu-
nity [2–4] and proposed various personal characteristics in voice
for human authentication. Emotion analysis of users’ voices is pro-
posed to understand their intent better [5]. Recent studies reveal
that our voices also carry biomarkers for diseases (e.g., COVID-19
[6] and Parkinson’s diseases [7]). Our voices contain much infor-
mation that has yet to be scrutinized.

In this paper, we ask the following question: is it possible to
explore cardiac information in voice to endue the VUI applications
with new functions? If we can, a tremendous number of existing
and legacy devices with VUIs would be able to perceive human
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heart activities without extra hardware. Machines can understand
user intentions more thoroughly by utilizing the authentic emotion
reflected by heart activities. Voice communication (e.g., phone con-
ferencing and custom services) could be more precise and efficient.

Our work unveils the opportunity of integrating cardiac activity
sensing into VUIs by introducing the voice-heart modulation effect.
It is based on a known physiological fact that heart activity leads
to blood pressure variation, thereby changing the vessel diame-
ter periodically. The vessel deformation happens in the lung and
throat. The lungs provide airflow for vocal folds vibration while
the throat controls voice production. Considering the correlation
between voice and heart rate revealed by previous studies [8], we
hypothesize that voice production ought to be influenced by cardiac
activity, i.e., the voice carries information about cardiac activities.
If our hypothesis holds, devices with VUIs would no longer be lim-
ited to explicit commands, and heart activity sensing will be freely
available.

Motivated by this vision, we aim to build a system that can
transfer microphones into cardiac activity sensors. To achieve our
goal, three challenges need to be addressed: (1) Voice is developed
for communication. How to discover and extract cardiac activity
information from the voice full of semantic information? (2) Each
person has a unique vocal system. The cardiac activity informa-
tion extracted from the voice will be coupled with the user’s vocal
system characteristics. How to build a model for cardiac activity
reconstruction requiring minimum user efforts? (3) How to quan-
titatively evaluate the reconstructed cardiac activities for various
downstream applications?

In this work, we proposed VocalHR, the first systematic frame-
work that utilizes the voice-heart modulation effect to extend VUIs
to cardiac activity sensing. We first normalize the voice loudness
to compensate for the volume’s impact on signal energy. Then, the
voice is enhanced by removing the influence of the lip radiation,
which is independent of cardiac activity. After that, we analyze the
physical model regarding cardiac activity’s impact on voice pro-
duction. Based on the analytical model, we extract representative
voice features closely related to cardiac activities’ impact on the
lung and throat. The analysis also reveals that the model governing
voice-heart modulation is coupled with vocal system characteristics.
Therefore, we propose a model based on a deep-learning demodu-
lator for cardiac activity reconstruction. Specifically, we utilize a
long-short term memory-based filter to extract the cardiac informa-
tion and then down-convert it to cardiac activities. To configure the
voice-heart demodulation model, we design a wavelet decomposi-
tion based discriminator for supervision. To evaluate our system,
we recruit 43 subjects with results showing 11.02% and 11.08% nor-
malized errors of cardiac event (ventricular depolarization) at low
and high heart rate states, respectively.

Our work makes the following contributions:

• We explore a novel voice-based cardiac activity sensing ap-
proach. We find that voice carries rich cardiac activity infor-
mation due to the heart’s impact on vocal organs.

• We develop VocalHR, a pervasive cardiac activity sensing
system that can be integrated seamlessly with VUIs with-
out additional hardware. Physiological voice features are
derived from the voice-heart modulation effect to represent

cardiac activity information. A deep learning-based model is
proposed to demodulate voice features for cardiac activities.

• We extensively evaluate VocalHR over 43 subjects using
multiple cardiac activity metrics. On average, the sensed
cardiac activities can achieve an 11.1% normalized timing
error of R peaks and a 15.7% normalized error on heart cycle
duration.

2 BACKGROUND AND PRELIMINARY
In this section, we introduce the mechanism of phonation and the
rationale behind how heart activity can influence voice production.
Then, we provide a proof-of-concept study to show the feasibility
of VocalHR.

Figure 2: Voice-heart modulation effect is rooted in the heart
activity-induced vessel deformation that happens in lung,
larynx, and pharynx.

2.1 Phonation and Articulatory settings
The human voice is the result of complex cooperation among mul-
tiple articulatory organs [9]. First, the lungs are extruded by the
diaphragm and chest cavity to provide the air required by voice
production. Then, the air moves through the bronchus and trachea
and arrives at the throat, where the vocal folds vibrate and produce
basic voice (i.e., air vibration) due to the push of airflow. The air
vibration propagates in the airflow and is adjusted and amplified
by articulatory organs (i.e., larynx, pharyngeal, and tongue). Fi-
nally, the air vibration becomes the voice we hear from our mouths.
Humans control the shape, tension, and relative position of these
articulatory organs, namely articulatory settings [10], to adjust the
airflow and vibration, thereby forming various voices.

2.2 Voice-heart Modulation Effect
The connection between heart and voice production is two-fold.
First, the lungs are the organ close to the heart and take a con-
siderable amount of bloodstream from the heart for gas exchange
(i.e., Pulmonary circulation) [11]. Second, the articulatory organs
in the throat area are surrounded by two carotids, which are the
main vessels delivering an enormous amount of blood to the throat
and head [12]. As the heart activities-induced blood volume and
pressure variation propagate in these vessels, the vessel shape (e.g.,
diameter) varies accordingly [13].
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Figure 3: A proof-of-concept of voice-heartmodulation effect.
A subject will have separable voices for the same phoneme
in different cardiac activity states.

Hypothesis: Considering the close link between heart and voice
production, we hypothesize that the lung airflow and articulatory
settings can be influenced by the vessel shape variation induced
by the heart activities, thereby making it possible to reconstruct
ECG-like cardiac activity signals from the human voice, namely
Voice-Heart Modulation Effect. Next, we conduct a proof-of-concept
study to support our hypothesis.

2.3 Proof-of-concept Study
To validate the feasibility of the voice-heart modulation effect, we
conduct a proof-of-concept study to collect voices corresponding to
different heart activity intensities in a room with low ambient noise.
As the vowel /A:/ is sensitive to the articulatory settings change
[14], a subject is told to pronounce /A:/ as long as possible in resting
state (i.e., low heart activity intensity) during the experiment. In
the second trial, subjects do 30 squats to increase the heart activity
and repeat the /A:/ pronunciation. The voices are collected using a
USB microphone with a sample rate of 48000 Hz.
VocalHRDistinction Analysis: If the hypothesis holds, the voices
of the subject from different heart activity statuses should be distin-
guishable. We choose Mel-frequency cepstrum coefficients (MFCC)
as well as its two extended variances, BFCC and LFCC, to dis-
tinguish voices from different heart activity statuses as they can
highlight the voice-range frequency properties and are widely used
in voice-based tasks. Figure 3 shows the distinction analysis based
on the first two principal components of the normalized features.
Each 150-𝑚𝑠 voice segment yields a data point on the graph. We
observe that the voice segments exhibit two clusters, which can be
easily separated by a linear decision boundary.
Summary: Our distinction analysis reveals that the voice-heart
modulation effect can influence voice production. Therefore, the
hypothesis is validated. To further sense cardiac activities using
the voice-heart modulation effect, in-depth biological modeling of
the voice-heart modulation effect is needed. In the following sec-
tions, we will first overview VocalHR’s system architecture. Then,
we elucidate VocalHR biological voice features that can represent
cardiac activities and dive into the data-driven cardiac activity re-
construction.

3 VOCALHR OVERVIEW
In this section, we present the overview of VocalHR. We first illus-
trate the application scenario, followed by the system architecture.

3.1 Application Scenario
VocalHR extends VUIs to cardiac activity sensing. The system builds
on the effect that cardiac activity influences multiple organs in-
volved in voice production. Before the first use, VocalHR requires
a one-time user enrollment to profile the user’s vocal organ char-
acteristics (as shown in Figure 4). During enrollment, users record
their oral reading voices and heart activities simultaneously. The
records are used to establish the voice-heart demodulator that will
be introduced in Section 5.2. The enrollment setup (illustrated in
Figure 8) is intuitive and quick, so it can be done by family practice
physicians during a routine visit or provided as a pharmacy service
similar to a blood pressure test.

Based on the established model, VocalHR can seamlessly inte-
grate into the existing VUIs to sense cardiac activities when the
user is normally interacting with devices such as smartphones
and speakers. We further discuss several potential application of
VocalHR in healthcare scenarios in Section 10.

3.2 System Architecture
As shown in Figure 4,VocalHR consists of a voice processingmodule
and a cardiac activity reconstruction module. When the user’s voice
is captured by VUI, its loudness is normalized by pre-processing.
The voice-heart modulation effect is then enhanced by removing
the irrelevant lip influence of voice. Afterward, the lung, larynx,
and pharynx components of voice are extracted, based on which
the impacts of cardiac activity on the components are described
by the corresponding modulation features. Once the features are
obtained, a data-driven demodulator will filter out the cardiac in-
formation from the modulation features. The information is finally
down-convert to the cardiac activities. During the one-time user
enrollment, the user’s voices are input to the front of VocalHR, and
heart activities are fed to the end. The voice-heart demodulator
is configured by this data-driven supervision to profile the user’s
vocal organ characteristics.

4 VOCALHR PROCESSING SCHEME
In this section, we discuss cardiac activity’s influence on voice
through an in-depth analysis of the voice production mechanism.
The analysis is conducted on the two main components of voice
production, i.e., lung airflow-induced vocal folds vibration and artic-
ulation. Based on the analysis, we introduce theVocalHR processing
scheme, where multiple cardiac activity-related voice modulation
features are proposed for cardiac activity sensing.

4.1 Pre-processing
VUIs are utilized by various types of devices, such as smartwatches,
home speakers, and robots. Due to human motion and daily activity,
users may interact with devices from different distances and direc-
tions, which results in voice volume variation. Considering that
cardiac activities can influence voice frequency bands and signal
power, the impact of voice volume should be eliminated initially.
We adopt loudness units relative to full scale (LUFS) as the mea-
sure for normalization rather than a-weighted decibel or dB sound
pressure level because the normalization with LUFS better corre-
lates with human voice range [15]. We set the normalization to -12
LUFS to keep all voice signals loud enough for further processing
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Figure 4: The overview of VocalHR. VocalHR leverages physiological voice features to capture heart’s impact on vocal organs
and uses these features for cardiac activity reconstruction.

while leaving room for short-term high-volume voice to prevent
information loss.

4.2 Enhancing Voice-heart Modulation Effect
The voice production process can be modeled by source-filter model
[16], where the voice is considered as the result of filtered vocal
fold vibrations. Formally, the voice production could be described
as the following transfer function:

𝑆 (𝑧 ) = Z{𝑠 (𝑡 ) } = 𝑈 (𝑧 )𝑉 (𝑧 )𝑅 (𝑧 ), (1)

where 𝑆 (𝑧) is the z-transform of voice signal 𝑠 (𝑡), 𝑡 denotes the
discrete time point, 𝑈 ,𝑉 , 𝑅 represent the models of lung airflow-
induced vibration, articulatory modulation, and lip radiation of the
voice wave, respectively. Since the VocalHR effect happens in the
first two parts, it is crucial to enhance these parts and suppress the
lip radiation. In acoustics, lip radiation can be modeled by a piston
in a sphere [17], where the sphere models the head and the piston
vibration represents the vibration of air between the lips. The model
can be formally described as:

𝑅 (𝑧 ) = R0 (1 − 𝑧−1 ), (2)

where R0 is the autocorrelation of 𝑠 (𝑡) with zero delays. The lip
radiation model in Equation (2) has the form of first-order high-
pass filter, which can be characterized by +6dB/octave slope (i.e.,
power increases by 6 decibels when the frequency doubles) [18].
In contrast, the airflow-induced vocal vibration𝑈 (𝑧) is considered
to be a second-order low-pass filter with −12dB/octave slope. This
imbalance makes the higher frequency part of the voice weaker. To
balance the frequency spectrum and better capture the VocalHR
effect, we enhance the pre-processed voice 𝑠 (𝑡) by an extra first-
order auto-regressive filter:

𝑠′ (𝑡 ) = 𝑠 (𝑡 ) − 𝛼𝑠 (𝑡 − 1), (3)

where enhancement coefficient 𝛼 is set to 0.97 to provide enhance-
ment of +6dB/octave slope. Figure 5 depicts the enhanced voice
where the frequency energy is balanced. After the enhancement,
the features of VocalHR will be extracted. Next, we will analyze
how cardiac activities influence voices and detail the features that
could describe cardiac activities’ influence.

4.3 Lung-Larynx Demodulation
Lungs provide air that drives vocal folds to vibrate and contain a
large number of blood vessels. Thus, the impact of cardiac activities
on vessels can be modulated into voice in the lungs. The modulation

Figure 5: Voice-heart modulation effect is enhanced by com-
pensating the frequency imbalance induced by non-relevant
lip radiation.

happens when the lungs are squeezed by the thoracic diaphragm
to exhale air for speech, which can be represented as:

𝑃𝑠 = 𝛽 (𝑑𝐻
𝑑𝑡

−
∑︁
𝑟

𝑑𝑟𝑙

𝑑𝑡
), (4)

where 𝑃𝑠 denotes the airflow pressure from lungs (i.e., the pressure
under vocal folds), 𝑑𝑟𝑙

𝑑𝑡
is the vessel volume (diameter) change due to

cardiac activities, 𝐻 is the volume of lung, 𝛽 describes the relation
between volume change and air pressure that can be derived from
Bernoulli’s principle. Equation (4) describes that the vessel’s volume
change due to cardiac activities will influence dynamic lung volume,
thereby influencing the air pressure under vocal folds. Knowing 𝑃𝑠 ,
the pressure 𝑃 that drives vocal folds vibration can be derived on
the basis of Bernoulli energy law (air flows through a orifice) [19]
as:

𝑃 = (1 − 𝑎2
𝑎1

) (𝑃𝑠 − 𝑃𝑖 ) + 𝑃𝑖 , (5)

where 𝑃𝑖 is the air pressure caused by the air flow escaping from the
vocal folds, 𝑎1 and 𝑎2 are the cross-sectional area of glottis entry
and exit, respectively. The vocal folds vibration 𝑢 (𝑡) = Z−1{𝑈 (𝑧)}
can thus be modeled as a forced mass-spring-damper system [19],
where force is from air pressure 𝑃 , vocal folds is themass, vocal folds
muscles act as spring and damper. This model can be formulated
as:

𝑀
𝑑2𝑢 (𝑡)
𝑑𝑡2

+ 𝐵𝑑𝑢 (𝑡)
𝑑𝑡

+ 𝐾𝑢 (𝑡) = 𝑃 (𝑡), (6)

where𝑀 , 𝐵, and 𝐾 denote the mass, damping and stiffness of vocal
folds, respectively, pressure 𝑃 (𝑡) is written in a time-dependent
form. By substituting Equations (4) and (5) into (6), we obtain a
ordinary differential equation about vocal folds vibration and car-
diac activity (vessel volume variation). Solving this equation is
non-trivial because the parameters (e.g.,𝑀 , 𝐵, and 𝐾 ) are typically
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user-dependent and require an intrusive setup to measure. Instead,
we utilize vocal folds vibration and its derivatives (i.e., 𝑢 (𝑡), 𝑑𝑢 (𝑡 )

𝑑𝑡
)

as modulation features for further processing. Instead, we utilize
vocal folds vibration and its derivatives (i.e., 𝑢 (𝑡), 𝑑𝑢 (𝑡 )

𝑑𝑡
) as mod-

ulation features for further processing (the contribution of these
features on performance are evaluated in Sec. 8.1). Since the en-
hanced voice signal 𝑠′ (𝑡) contains resonance components of 𝑢 (𝑡)
due to articulatory modulation 𝑉 (𝑧) (see Equation (1)), the main
steps to extract 𝑢 (𝑡) from 𝑠′ (𝑡) are:

• Find 𝑡𝑣 where the effect of 𝑉 (𝑧) is strong on 𝑠′ (𝑡)
• Use linear predictive coding (LPC) to model articulatory
modulation 𝑉 (𝑧) around 𝑡𝑣 that is found in the first step

• Apply inverse filtering on 𝑠′ (𝑡) based on the LPC obtained
in the step 2

The above steps for𝑢 (𝑡) extraction are well-established in acoustics.
We adopt the PSIAIF algorithm [20] that can provide precise 𝑢 (𝑡)
extraction by iteratively applying these steps.

Figure 6: VocalHR’s voice features and the underlying biolog-
ical mechanisms.

4.4 Pharynx Demodulation
In addition to vocal folds vibration, the modulation 𝑉 (𝑧) in the
voice production model is also influenced by cardiac activities. The
rationale behind it, as mentioned in Section 2, is the articulatory
organs in the throat (mainly the pharynx) could be influenced by
the diameter variation of the two carotid arteries. Therefore, based
on the acoustic tube model of the pharynx [21], we propose an
equation governing the pharyngeal tubes and carotids diameters,
which can be denoted by:

𝑟𝑛𝑝 = 𝑟𝑛𝑣 − 𝑘2𝑟𝑛𝑐 , (7)

where 𝑟𝑛𝑝 is the effective diameter of the 𝑛-th pharyngeal acoustic
tube, 𝑟𝑛𝑣 is the ideal diameter of the same tube controlled by muscle
according to the 𝑠 (𝑡), 𝑟𝑛𝑐 is the diameter of the carotid aside the tube,
and 𝑘 is the elastic parameter of the muscle between carotids and
pharynx. The constant 2 in the above equation is added because
there are two carotid arteries. The above equation describes that
heart activity drives the carotid arteries to “extrude” pharynx. As the
pharynx is modeled as a chain of several acoustic tubes, reflection
exists when sound propagates through the junction of two adjacent
tubes. The reflection coefficient 𝑘𝑛 can be calculated as:

𝑘𝑛 = (𝑟𝑛+1𝑝 − 𝑟𝑛𝑝 )/(𝑟𝑛+1𝑝 + 𝑟𝑛𝑝 ) . (8)

Intuitively, the reflection coefficient is hard to be obtained from the
voice 𝑠′ (𝑡). However, the LPC analysis and voice resonant correlate
highly with the reflection coefficient 1, which provides an opportu-
nity to profile the cardiac activity’s impact on the voice. Specifically,
1See voice analysis literature [22] for more details.

VocalHR utilizes LPC Coefficients as the pharyngeal features of
VocalHR. We use a 30-tube model (i.e., a 30-order LPC, see Section
6.3.1 for details) to have a fine-grained profile of VocalHR (see Sec.
8.1 for the impact of these features to system performance).

5 CARDIAC RECONSTRUCTION VIA
VOICE-HEART DEMODULATION

To demodulate cardiac activity from the extracted features, a solv-
able model of voice features-activity demodulation need to be estab-
lished. The analysis in Section 4 reveals the non-triviality of solving
the modulation as user-dependent physiological parameters are
involved. The recent advances in machine learning provide us an
opportunity to solve the problem, i.e., building personalized demod-
ulator using data-driven infrastructures. In the rest of this section,
we will first analyze the challenges of realizing such a data-driven
model, followed by the elucidation of our proposed voice-heart
demodulator.

5.1 Design Considerations
Section 4 formally models cardiac activities’ influence on voice pro-
duction. We represent this modulation using an abstract function Λ,
i.e., 𝐼 = Λ(𝐶), where 𝐼 denotes the voice features,𝐶 is the cardiac ac-
tivity. To obtain a voice-heart demodulation model 𝜆𝑤 (𝐼 ) ≈ Λ−1 (𝐼 )
with learnable parameters 𝑤 determined through a data-driven
approach, we have the following two main considerations.
Consideration 1: Demodulator Architecture. To approximate
Λ−1, our demodulator 𝜆𝑤 should have a good learning capability.
Studies have revealed that a well-designed structure can benefit
learning capacity (e.g., convolutional neural network on image-
related tasks) more than simply adding extra neural layers [23, 24].
As the demodulator takes non-IID time-vary cardiac features and
outputs heart activities, we consider structures that can utilize
historical information for better time-series data processing. In
addition, the demodulator should be on a reasonable scale to save
the limited computational and storage resources on IoT devices.
Consideration 2: Demodulator Configuration. During user
enrollment, the configuration of the demodulator is conducted by
minimizing an approximation differenceL(𝜆𝑤 (𝐼 ),Λ−1 (𝐼 )) in terms
of the parameters𝑤 using user-enrollment voice and heart activity
records. Mean squared error (L2) and least absolute errors (L1)
are the common choices of the L. However, studies have pointed
out that the model configured via L1 and L2 tends to generate
blurry results and loses high-frequency details [25] (e.g., R wave,
the sharp peak caused by ventricular depolarization) because the
error is averaged over multiple enrollment records. Our L should
be carefully designed to optimize the approximation results.

5.2 Voice-Heart Demodulation
An intuitive signal processing method to extract signal-of-interest
is filtering. Specifically, learnable FIR filters based on convolutional
neural networks are utilized in recent studies on cardiac signal ex-
traction [26] due to the absence of hand-crafted filters. However, a
large number of stacked convolutional layers are needed to capture
the temporal information, which raises the concern of consuming
too many resources on IoT devices. In addition, the temporal con-
volution is designed to process a single time series, which still has
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difficulties in processing the temporal VocalHR features vectors.
To address these issues, the voice-heart demodulator builds upon
the long-short term memory (LSTM), which is considered to be a
learnable non-linear IIR filter. The temporal information is captured
through recurrent LSTM gates with no limit on the data dimension.
Next, We detail the voice-heart demodulator design.
Two-Stage Demodulation. Logically, there are two steps to de-
modulate cardiac activities from the VocalHR features, i.e., filtering
cardiac information from the VocalHR features and down-convert
it to the cardiac activity signal (shown in Figure 7). Following the
logic, we adopt the encoder-decoder architecture that has been
proven to have superior learning capability in many reconstruction
tasks [27, 28] as the basic skeleton of the voice-heart transformer. As
discussed above, both the encoder and decoder are based on LSTM.
In particular, the information filtering conducted by LSTM-based
encoder 𝐸 has the following form:

ℎ𝑒𝑡 , 𝑞
𝑒
𝑡 = 𝐸 ( · · · 𝐸 (𝐸 (ℎ𝑒0 , 𝑞𝑒0 , 𝐼0 ), 𝐼1 ), · · · 𝐼𝑡−1 ), (9)

where ℎ𝑒𝑡 , 𝑡 ∈ [0,𝑇 + 1] is the filtering results (i.e., hidden states of
LSTM) that contain cardiac information at time step 𝑡 , 𝑞𝑒𝑡 represents
the encoder LSTM state, 𝑇 is the total time length of the input
VocalHR features. The above equation of the encoder indicates the
cardiac information and the LSTM state are passed to the next time
step, thereby the historical information is utilized for better filtering.
Similarly, the decoder 𝐷 conducts cardiac activity down-convert
as:

𝐶𝑡 , ℎ
𝑑
𝑡 , 𝑞

𝑑
𝑡 = 𝐷 ( · · ·𝐷 (𝐷 (𝐶0, ℎ

𝑑
0 , 𝑞

𝑑
0 ,H0 ),H1 ), · · · H𝑡−1 ), (10)

where 𝐶𝑡 is the cardiac activity, ℎ𝑑𝑡 and 𝑞𝑑𝑡 are the decoder LSTM
hidden and cell states, and H𝑡 is the adaptive-weight cardiac in-
formation derived from [ℎ𝑒1, · · · , ℎ

𝑒
𝑇+1]. Different from the encoder,

the decoder uses (𝐶𝑡 ⊕ H𝑡 ) as the LSTM input and has an extra
linear transformation 𝐶𝑡 = 𝜁 (ℎ𝑑𝑡 ) after the LSTM. Next, we will
introduce the adaptive weighting in detail.

Figure 7: Architecture of the voice-heart demodulation.
Adaptive Weighting of Filtering. Typically, the cardiac infor-
mation is considered to be H𝑡 = ℎ𝑒 or H𝑡 = ℎ𝑒

𝑇
. However, these

considerations assume either the historical cardiac information is of
the same importance or the latest information has highest weight,
which are strong assumptions. As we depict in Figure 7, VocalHR
makes the masking weights of historical information a part of the
model parameters𝑤 (i.e., attention mechanism [29]). Thereby, the
adaptive weightingH𝑡 can be formulated as:

H𝑡 = ®𝛼𝑡 × [ℎ𝑒1 , · · · , ℎ𝑒𝑇+1 ]
⊤, (11)

where ®𝛼𝑡 is the weight of historical cardiac information. ®𝛼𝑡 is cal-
culated using the current LSTM state ℎ𝑑𝑡 and all the historical infor-
mation, which can be formulated as:

®𝛼 ′𝑡 = [ℎ𝑑𝑡 ⊕ ℎ𝑒1, · · · , ℎ
𝑑
𝑡 ⊕ ℎ𝑒𝑇+1]𝑤

⊤
rep + 𝑏,

®𝛼𝑡 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓 ( ®𝛼 ′𝑡 )),
(12)

where𝑤rep is the learnable parameter, 𝑏 is the bias, 𝑓 is the leaky
ReLU function. Knowing the demodulation architecture, we intro-
duce the configuration procedures of the demodulator next.

5.3 Demodulator Configuration
Recently, to avoid the drawbacks of L1 and L2 discussed in Section
5.1, integrating domain knowledge into target functions is widely
used for better optimizing the data-driven models. In Cardiology,
the fiducial points system (e.g., R wave timing) and derivatives (e.g.,
Heart Rate Variability) are long and well-studied domain knowl-
edge. In particular, our model 𝜆𝑤 could be considered as a good
approximation to Λ−1 if the fiducial points and derivatives of the
reconstructed cardiac activities are close to their original values.
Nevertheless, the calculation of this domain knowledge is not differ-
entiable, making gradient backpropagation and parameter learning
impossible. To avoid the dilemma, we utilize a discriminator model
as the target function in VocalHR. The discriminator model D is
a binary classification model designed to distinguish the recon-
structed and original cardiac activities given the VocalHR features.
In contrast, our model will be configured to reconstruct cardiac
activities that can not be distinguished (as depicted in the orange
area of Figure 7). Now, we can conclude the whole configuration
process of the Voice-Heart Transformer as:

argmin
𝜆𝑤

max
D
E[log(D (𝐶, 𝐼 ) ) ] + E[log(1 − D(𝜆𝑤 (𝐼 ), 𝐼 ) ) ], (13)

where our model 𝜆𝑤 and discriminator model D are configured
simultaneously using the enrollment data and only 𝜆𝑤 will be
used after the configuration. The configuration is done in a data-
driven approach, and the gradient of optimization error (supervising
vector) is back-propagated to the demodulator (blue area in Figure 7)
to update the learnable parameters. A good discriminator will help
our model to demodulate better. Therefore, instead of simply taking
cardiac activities, the discriminator decomposes frequency bands in
the cardiac activity via convolution-based wavelet decomposition
and uses the wavelet coefficients for discrimination.

6 EVALUATION SETUP
In this section, we detail the evaluation preparation and the perfor-
mance metrics for evaluating VocalHR.

6.1 Evaluation Setup
6.1.1 Experiment Settings. As shown in Figure 8, the experiment
setup consists of two simultaneous parts. First, the subjects are
required to orally read the selected materials for voice collection.
Second, subjects’ cardiac activities are captured at the same time as
ground truth.
Voice.We use an ordinary USB microphone sampling at 48 kHz for
voice recording. The microphone is placed on a desk in front of the
subject. The distance between the microphone and the subject is 65
cm. A monitor is used to show experimental subjects the dedicated
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Figure 8: VocalHR experimental setup.

reading materials. We use the standard reading materials (i.e., The
Rainbow Passage, Comma Gets Cure, North Wind and Sun, Arthur
the Rat, and The grandfather Passage) in voice studies [30, 31] to
make sure the collection voices cover most English phonations.
Cardiac Activity. The ground-truth cardiac activities (i.e., Elec-
trocardiogram signal, ECG) are recorded simultaneously as the
voice collection using a wearable ECG sensor (Shimmer ECG kit
[32]) with a 512-Hz sample rate. Shimmer’s integrated clock is
synchronized to the voice recording laptop.

6.1.2 VocalHR Collection. 43 subjects (14 females and 29 males)
participate in the experiments, including 22 native and 21 non-
native English speakers. All the participants are recruited from
campus via Emails and advertisements. The experiment is approved
by our institutional review board. None of our subjects has voice
or heart disease. The average age of the subjects is 21.2 (std=1.7).
To get natural voices, first, the subjects are asked to go over the
materials and choose four materials for later oral reading. Dur-
ing the experiments, the subjects first orally read two materials
to record voices in resting states (i.e., low HR states). Then, their
cardiac activity intensity (i.e., heart rate) will be increased through
exercises (e.g., push-up, jump, or squats, decided by subjects). As
cardio-pulmonary function varies across subjects, subjects are told
to stop when they feel short of breath. After a 30-second breath
regulation period, the subjects will continue to orally read the re-
maining two materials. We remark the voices from the remaining
two materials as high-HR voices. The mean heart rates of low- and
high-HR states are 85.2 (std=10.9) and 100.1 (std=12.1), respectively.
A small portion of signals is excluded due to accidental acoustic
noises or unstable physical connections. For the oral reading, we
ask subjects to use their normal tone and pace in daily life to read
the material to get representative results of VocalHR’s performance.
We use 0.5 seconds as the time length of a sample (overlap=100 ms).
The reason for choosing a 0.5-seconds sample length is two-fold.
First, a longer sample length tends to include many speech behavior
patterns (e.g., utterance habits), which we observe is misleading to
the supervision of VocalHR’s demodulation. In contrast, a shorter
sample is too short for the demodulator to capture temporal in-
formation. Based on the sample length, the size of Lung-Larynx
features is 4000 (for both 𝑢 (𝑡) and 𝑑𝑢 (𝑡 )

𝑑𝑡
). The size of demodulated

Pharynx features is 208. For each subject, we take a low-HR voice
and a high-HR voice for model optimization and use the remaining
two oral readings for evaluation. As we collected two readings in

resting state and another two readings after exercise, the number
of possible train/test splits is four. Therefore, we apply four cross-
validations. The average number of samples is 995 (train) and 870
(test) for a subject.

6.2 Performance Metrics
We evaluate the performance of VocalHR from the intra- and inter-
cardiac cycle perspectives.

6.2.1 Cardiac Cycle and Event Timing. The heart rate (HR) is yet the
most common and intuitive cardiac activity measure. HR sensing
has been integrated by many commercial devices (e.g., treadmills
and smartwatches) as one of their fundamental features. Typically,
the instantaneous HR derived from the duration of a cardiac cycle
is reported because of its fast measuring time. Therefore, we use
the normalized error of cardiac cycle duration as the fundamental
metrics for evaluation, which can be formulated as:

𝐸𝑟𝑟cycle =
|𝑇 pred
𝑛 − 𝑇

ground truth
𝑛 |

𝑇
ground truth
𝑛

, (14)

where𝑇 ground truth
𝑛 and𝑇 pred

𝑛 are the duration of 𝑛-th ground-truth
and reconstructed cardiac cycle, respectively.

As the heart’s functionality relies on the periodical and per-
fect cooperation among multiple heart components, the cardiac
cycle and its event timings naturally become the common focus
of emerging cardiac activity sensing. Among the cardiac activities,
ventricular depolarization (i.e., R peak) is the most significant event
that indicates blood pumping [33]. Therefore, R peak extraction is
used as the initial step of many cardiac activity analysis methods
[34]. We would like to know VocalHR’s capability to find R peak
timings such that it can facilitate existing analysis methods. Specifi-
cally, to exclude the influence from heart rate, we report normalized
R wave timing error, which is formulated as:

𝐸𝑟𝑟Rpeak = 100% × |𝑡pred𝑛 − 𝑡ground truth
𝑛 |

𝑇
ground truth
𝑛

, (15)

where 𝑇 ground truth
𝑛 is the aforementioned duration of 𝑛-th cardiac

cycle in ground truth, 𝑡pred𝑛 and 𝑡ground truth
𝑛 denote the timings of

R wave peaks in VocalHR’s prediction and the Shimmer-measured
ground truth, respectively.

6.2.2 Heart Rate Variability. In the past decade, studies have re-
vealed that heart cycle variation across multiple cardiac cycles (i.e.,
heart rate variability, HRV) is a significant indicator of many car-
diovascular diseases and mental disorders [35, 36]. The mainstream
of HRV analysis can be categorized into time difference-based and
frequency-based methods. VocalHR, to extend VUIs to heart activity
sensing, is expected to be compatible with existing HRV analysis
methods. Therefore, we adopt standard deviation of successive NN
interval differences (SDSD) and band power (BP) of HRV as the
time and frequency domain metrics. Specifically, the error of SDSD
can be calculated as:

𝐸𝑟𝑟SDSD = |SDSDpred − SDSDground truth |, (16)

SDSD𝑗 = 𝜎{𝑇 𝑗
𝑛 −𝑇 𝑗

𝑛−1 |𝑛 = 1, 2, · · · , 𝑁 }, (17)
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where 𝑁 denotes the total number of cardiac cycles and 𝑗 ∈ {pred,
ground truth}. The frequency band power are calculated on low-
frequency (𝑓1 = 0.04,𝑓2 = 0.15) and high-frequency (𝑓1 = 0.15,𝑓2 =
0.4) bands as:

𝐸𝑟𝑟BP = 2

�����∫ 𝑓2

𝑓1
𝑆pred (𝑓 )𝑑𝑓 −

∫ 𝑓2

𝑓1
𝑆ground truth (𝑓 )𝑑𝑓

����� , (18)

where 𝑆pred (·) and 𝑆ground truth (·) are the HRV power spectral den-
sity functions of the reconstructed and Shimmer measured cardiac
activity, respectively.

6.3 System Calibration
We determine the optimal value of key parameters in VocalHR
through the following calibration.

6.3.1 Pharynx Model Order. In Section 4.4, we formally described
that the pharyngeal vocal settings are influenced by cardiac ac-
tivities, which can be modeled as sound tube chain variation and
captured by Linear Prediction Coefficients (LPC). An appropriate
number of sound tube sections (i.e., the order of LPC) is required to
capture pharynx settings with minimum information loss. There-
fore, we run the cardiac activity reconstruction when the LPC order
is set as [10, 20, 30, 40, 50] and record the LPC order where the min-
imum 𝐸𝑟𝑟Rpeaks is reached for each subject. During the comparison,
only the length of the LPC vector and the input size of the voice-
heart demodulator is changed. For each subject, we follow the same
setup described in Sec. 6.1.2 without cross-validation. The results
reported in Figure 9 show that most of the subjects have their best
model when the number of pharynx features sections is 20 or 30.
We further observe that the 𝐸𝑟𝑟Rpeaks reported from 20-section and
30-section models are almost identical (≈12%). Therefore, in the
rest of our calibration and evaluation, we set the LPC order as 30.

Figure 9: The model distribution by ideal number of pharynx
features sections.

6.3.2 Filtering Stack Depth. The VocalHR encoder 𝐸 conducts a
non-linear filtering of the VocalHR modulation features for the
cardiac information. The number of stacked LSTM in the encoder
is related to the non-linearity of the filtering, thereby being one of
the key parameters in VocalHR. Typically, overmuch stacked LSTM
increases model configuration difficulty, whereas insufficient LSTM
cannot extract meaningful cardiac activity information. Therefore,
we test different numbers of stacked LSTMs with other parameters
being fixed to determine the extraction stack depth that minimizes
𝐸𝑟𝑟Rpeaks. The data is prepared following the same setup described

in Sec. 6.1.2 without cross-validation. The results shown in Figure 10
indicate that the majority of the configured models have their best
performance on four stacked LSTM for filtering. Therefore, we apply
four stacked LSTMs in the following calibration and evaluation.

Figure 10: The model distribution by ideal filtering stack
depth.

7 OVERALL PERFORMANCE

Figure 11: The ground-truth cardiac activity signal and the
cardiac activity signal reconstructed by VocalHR.

In this section, we evaluate the overall performance of VocalHR
utilizing the metrics detailed in Section 6.2. In Figure 11, we show
a sample clip of the cardiac activity signal that VocalHR outputs,
compared with the ground-truth signal measured by the sensor. It
shows the timing information of peaks is well captured. For fur-
ther analysis, Figure 12 illustrates the mean normalized R wave
timing error 𝐸𝑟𝑟Rpeaks and cardiac cycle duration error 𝐸𝑟𝑟Cycle of
all subjects for high and low cardiac activity intensities, respec-
tively. We observe that VocalHR has similar performance on both
the 𝐸𝑟𝑟Rpeaks (11.02%, std=4.22% versus 11.08%, std=3.12%) and the
𝐸𝑟𝑟Cycle (14.63%, std=5.54% versus 16.45%, std=6.17%) for high and
low cardiac activity intensities. The low timing errors indicate that
VocalHR can perform heart rate sensing well. It is worth noting
that the 𝐸𝑟𝑟Rpeaks is lower than 𝐸𝑟𝑟Cycle because the R wave offset
accumulates when calculating the cycle timing error.

To further understand the quality of the reconstructed cardiac
activities, we calculate the cardiac cycle distributions by the two
types of error, which are reported in Figure 13. It shows that more
than 90% of the VocalHR-sensed heart activities have R wave timing
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Figure 12: The Rwave timing error and cardiac cycle duration
error of VocalHR-sensed heart activities.

error less than 17% and cardiac cycle duration error less than 22%.
The maximum R wave timing errors of low and high heart rate
status are 20.13% and 26.15%, respectively. For the cardiac cycle
duration, 32.31% and 33.37% maximum errors are reported for low
and high heart rate status, respectively.

Figure 13: The cumulative frequency of the VocalHR-sensed
heart activity by cycle and event timing errors.

Next, we proceed to the heart rate variability (HRV) derivatives.
The variability of the successive cardiac cycle (SDSD) is analyzed
and reported in Figure 14. The reconstructed cardiac activities
report mean 𝑆𝐷𝑆𝐷 as 75.167 ms (std=20.634 ms) and 73.736 ms
(std=26.483 ms) for high and low cardiac activity intensities as
𝑆𝐷𝑆𝐷 of sensor-record cardiac activities are 47.197 ms (std=23.122
ms) and 48.159 ms (std=34.603 ms), respectively. The results show
VocalHR senses slightly higher successive cardiac cycle variabil-
ity than the ground truth. We consider it as a normal increase
introduced by the cardiac cycle error depicted in Figure 12.

0 20 40 60 80 100 120 140
SDSD

Voices w/
Low HR

Voices w/
High HR

CardiacVoice
Ground Truth

Figure 14: The comparison of standard deviation of succes-
sive cardiac cycle differences between VocalHR’s reconstruc-
tion and ground truth.

In addition, we calculate 𝐸𝑟𝑟SDSD and report its distribution in
Figure 15. The figure shows that VocalHR’s 𝐸𝑟𝑟SDSD are less than
70 for 90% of the subjects without an obvious bias between high
and low heart rate status. The mean 𝐸𝑟𝑟SDSD are 32.399 and 29.801
when subjects are in low and high cardiac activity intensities.

Figure 15: The cumulative distribution of the sensed cardiac
activity in terms of 𝐸𝑟𝑟SDSD

Finally, we compare the reconstructed cardiac activity with
the ground truth on HRV band power. As shown in Figure 16,
the low-frequency band has mean 𝐸𝑟𝑟BP = 1.310 × 10−2𝑚𝑠2 and
𝐸𝑟𝑟BP = 1.127×10−2𝑚𝑠2 for high and low heart rate status. For high-
frequency band, 𝐸𝑟𝑟BP are 1.344×10−2𝑚𝑠2 and 1.269×10−2𝑚𝑠2 for
high and low heart rate, respectively. The band power of ground
truth is 8.88 × 10−2𝑚𝑠2 (low-freq) and 9.89 × 10−2𝑚𝑠2 (high-freq)
in low heart rate status. In high heart rate status, the band power
of ground truth is 9.21 × 10−2𝑚𝑠2 (low-freq) and 10.85 × 10−2𝑚𝑠2
(high-freq).

Figure 16: The heart rate variability band power error of
VocalHR’s reconstruction.

8 CARDINALITY STUDY
To better understand the effectiveness of VocalHR’s design, in this
section, we systematically remove individual system key compo-
nents (i.e., independent variables) and gain insights by observing
the corresponding system behavior (i.e., dependent variables). Note
that our Cardinality study is a type of controlled experiment that
includes not only the data-driven voice-heart demodulation part
(similar to the ablation study [37] in machine learning system de-
sign) but also the biological voice features.
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8.1 How Much Does Each Demodulation
Feature Contribute?

To verify the effectiveness of VocalHR’s biological voice features, we
compare VocalHR’s performance with different features removed.
For a fair comparison, all of these VocalHR variants are retrained
using the same parameters and architecture except the pharynx and
larynx features. To avoid modifying the data-driven reconstruction,
we mask the excluded features with 0 instead of directly removing
them. Figure 17 shows the performance degradation caused by
masking off each type of feature, compared to the full version
VocalHR. We observe removing any type of features will increase
the normalized R wave timing error by 9.0% at least. We notice
that the performance degradation caused by removing the vocal
fold vibration derivatives (16.9%) is greater than that caused by
removing vocal vibration (12.2%). This is because the derivatives
can better capture the variation and reduce the influence of the
fundamental vibration frequency. To conclude, the proposed voice
features are closely related to cardiac activity modulation, and each
type of feature is non-redundant for cardiac activity reconstruction.

Figure 17: The R wave timing error increment induced by
excluding VocalHR features.

8.2 Understanding Cardiac Activity
Reconstruction in Voice Data

In this part, we examine VocalHR’s design for cardiac activity re-
construction, i.e., the two-stage demodulation, the adaptive weight-
ing, and the demodulator configuration based on the discriminator
model. Specifically, we use the default VocalHR setting used in
Section 7 as the control group. In addition, we create three exper-
imental groups A, B, and C. In group A, we disable the adaptive
weighting and use H𝑡 = ℎ

𝑒
𝑇
instead. In group B, we totally disable

the two-step demodulation design, i.e., use simple LSTM for the
cardiac activity reconstruction. As for group C, we disable the dis-
criminator and replace it with MSE criteria for the configuration.
The absolute changes of 𝐸𝑟𝑟Rpeak and 𝐸𝑟𝑟Cycle among groups are
reported in Table 1. We observe that the 𝐸𝑟𝑟Rpeak decreases by
21.3%, 69.7%, and 17.2% for groups A, B, and C, respectively. The
𝐸𝑟𝑟Cycle also decreases more than 19% for the three experimental
groups.

9 USABILITY AND ROBUSTNESS STUDY
9.1 The Impact of Speech Rate
In the daily use of the voice-user interface, the user may change
the rate of speech in different scenarios, which are not expected

Group Setting 𝑬𝒓𝒓Rpeak (𝚫) 𝑬𝒓𝒓Cycle (𝚫)

Control
Group

VocalHR
Default 11.1% (0) 15.7% (0)

A w/o Attentional
Representation 32.4% (+21.3%) 42.1% (+26.4%)

B w/o Two-step
Reconstruction 79.7% (+68.6%) 86.7% (+71.0%)

C w/o Discriminator
Configuration 28.3% (+17.2%) 35.2% (+19.5%)

Table 1: Absolute changes of 𝐸𝑟𝑟Rpeak and 𝐸𝑟𝑟Cycle when in-
dividual VocalHR components are disabled.

to degrade VocalHR’s performance. Motivated by this usability re-
quirement, we ask three volunteer subjects who have participated in
our experiments to do extra oral readings in three different speeds,
i.e., slower than their normal speed (slow rate), normal speed (nor-
mal rate), and personal fastest speed (high rate). Other experimental
settings remain the same. We evaluate the performance using the
same model as Section 7, and the results are reported in Figure
18. The figure shows that the HRV band power of VocalHR is not
influenced by the speech rate for the three subjects. The obser-
vation confirms that the voice features utilized by VocalHR are
well-designed to separate the semantic information in voices.
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Figure 18: The VocalHR’s performance over different user’s
speech rates.

9.2 The Impact of User Distance & Direction
Considering the pervasiveness of VUI, VocalHR is supposed to
have good cardiac sensing capability when people interact with
VUIs at various distances and directions. To validate the impact of
distance and direction on the performance, we ask the same three
volunteers to interact with the microphone in various distance
(20cm, 70cm, and 200cm) and directions (azimuth=-65°, -30°, 0°,
30°, 65°; elevation=-60°, 0°, 60°). During the experiment, all other
settings are kept the same as that in Section 7. Figure 19 shows
the error of averaged HRV band power of the three volunteers. We
observe that for each elevation setup, the HRV band power error is
reasonably well (mean=3.01) within the normal interaction range
(≤ 1 m). When the distance reaches 2 m, the band power error
becomes worse (mean=5.02). The direction has little influence on
the performance. We think the main reason is the microphone does
not pick up the voice from a distance well. The attenuated voices
result in an unsatisfactory signal-to-noise ratio for the VocalHR
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pre-processing and voice enhancement. It is worth noting that
VUIs for distance use usually integrate a directional microphone
or microphone array to pick up clear voices. Therefore, we further
evaluate VocalHR using a microphone array (UMA-8 [38] with
beamforming) that has a similar design as those arrays in smart
home assistants. The reported mean error of band power is 3.03𝑚𝑠2
at 3 m, which is close to the error within the normal interaction
range reported in Figure 19. These results show VocalHR can work
well on VUIs deployed in different distances and directions.

Figure 19: The HRV band-power error when user interacts
in various distances and directions.

9.3 The Impact of Voice Sampling Rate
Currently, there are a large number of VUIs running at different
sampling rates according to various requirements. The landline
phones provide an 8 kHz sample rate for basic voice interaction
and communication. The Voice-over LTE (VoLTE) enables a higher
sampling rate at 16 kHz. VUIs running on modern smart devices
usually have a sample rate of 48 kHz. It is also important to know if
VocalHR can accommodate these variances and facilitate pervasive
enhanced VUI applications. Therefore, we evaluate the performance
of VocalHR under the three most common sampling rates aforemen-
tioned.We keep the evaluation setup the same as the other studies in
this section except for the sample rate. The results shown in Figure
20 indicate that the Err𝑅𝑝𝑒𝑎𝑘𝑠 slightly increases when the sample
rate of VUI drops (mean Err𝑅𝑝𝑒𝑎𝑘𝑠= 13.55@8kHz, 12.30@16kHz,
11.61@48kHz). This is because the pharynx demodulation features
are slightly influenced by the absence of high-frequency informa-
tion. Since most of the cardiac information locates below 4 kHz,
the performance degradation is limited and VocalHR is robust to
different sample rates.

Figure 20: The 𝐸𝑟𝑟𝑅𝑝𝑒𝑎𝑘𝑠 performance under the influence of
different sampling rates of VUIs.

9.4 The Impact of Microphone Frequency
Response

Besides voice sampling rate, microphones usually have distinct
frequency responses, which means different microphones treat
frequency components differently. The microphone type and the
enclosure are the two main influencing factors of microphone fre-
quency response. To evaluate the impact of microphone frequency
response, we tested three microphones carried by different devices,
which are a condenser microphone (the same one used in Section
7), an electret microphone (Logitech Pro Gaming microphone), and
a MEMS microphone (Poco X3). The frequency responses of the
microphones are shown in Figure 21. The mean Err𝑅𝑝𝑒𝑎𝑘𝑠 of a con-
denser microphone, MEMS microphone, and electret microphone
are 12.7, 13.2, and 12.9, respectively. We observe that the frequency
response has little influence on VocalHR’s performance. Therefore,
we can conclude that VocalHR is able to support and improve a
very large part of the existing VUIs.

Figure 21: The 𝐸𝑟𝑟𝑅𝑝𝑒𝑎𝑘𝑠 performance under the influence of
different microphone frequency responses of VUIs.

9.5 The Impact of Noise
When the user speaks, the generated sound wave propagates in the
air media, which is prone to interference from ambient noises. As
the noises can make VUI insensitive to minute alterations of the
human voice, we are wondering if it can decrease the performance
of our system. Therefore, we evaluate our system under three typi-
cal types of real-world noises with diverse spectral properties, i.e.,
home appliances noises, music noises, and talking people noises.
Specifically, we place a loudspeaker near the subject and playback
the recording of these three types of noises at different loudness
levels, i.e., volume varies as 0 (38 dB SPL), 33% (52 dB SPL), 66%
(63 dB SPL), and, 100% (76 dB SPL). In the same while, the subject
reads the required materials. The collected audio signals are fed
into our system. For comparison, we further apply software-based
noise reduction technology [39] on the 100% noise group to see how
the noise reduction algorithm influences VocalHR. With current
experiment setting, Figure 22 shows the results.
Home appliances. The noises from the home appliance (a washer)
occupy a narrow frequency band, which has a large overlap with
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some voice harmonics. We observe that the Err𝐶𝑦𝑐𝑙𝑒 increases as
the noise gets louder. Because the noise is narrow-band, the perfor-
mance degradation is limited. We also observe that noise reduction
work well on the home appliance noise, and the performance drop
is controlled by noise reduction.
Music. The music background noise mainly influences the lower
frequency. We see the noise pollute the fundamental frequency
band of the subject’s voice. Therefore, the performance drop is
higher than the simple home alliance noise. Noise reduction can
reduce the influence of music noise.
Talking people. The talking noise has a wider frequency band and
is totallymixedwith the subject voices. In this case, the performance
decreases fast when the volume is increased. Different from the
music noise, VocalHR can get much less cardiac information from
the VUI. In the worst case, noise reduction can still reduce the
impact of noisy talking.

To conclude, VocalHR can be robust to common single-tone
noises utilizing the derivatives of vocal folds vibration. For noises
within voice frequency, the influence can be reduced by noise reduc-
tion. For example, voice echo interference can be largely suppressed
by adaptive filtering [40]. Furthermore, VocalHR is also compatible
with spatial noise cancellation (i.e., isolating the speaking person)
if the VUIs are based on microphone arrays.

Figure 22: The performance of VocalHR under the influence
of different types of noise.

9.6 Impact of Real-world Environment
To evaluate VocalHR’s robustness to environmental dynamics, we
further test VocalHR in four real-world scenarios, i.e., office, meet-
ing room, warehouse, and shopping mall. We use a hand-held
iPhone 12 as the voice collection device to have a typical setup
of daily VUI use. The synchronization between the heart activity
sensor and iPhone is done by an extra camera recording the start
recording event timestamps. During the collection, we ask seven
subjects to walk around freely while reading the materials printed
on the paper. Other procedures remain the same as stated in Sec.
6.1.2. As depicted in Figure 23, the performance of VocalHR is

steady during motion and in various environments (mean=11.27%).
VocalHR is robust to the variance of environmental dynamics such
as clutter and the presence of echos.

Figure 23: The R wave timing error in various real-world
environments.

9.7 Longitudinal Study
Similar to biometrics [41], it is important to prove the permanence
of the voice-heart modulation effect to ensure the robustness of
VocalHR. To conduct the longitudinal study, we collected data from
10 subjects randomly selected from the original subjects in 100 days.
We follow the same data collection protocol as mentioned in Sec.
6.1.2. The R wave timing error and cardiac cycle duration error are
shown in Figure 24. The reported 𝐸𝑟𝑟Rpeaks is 11.27%, std=4.00%
versus 10.89%, std=2.95%) for high and low cardiac activity inten-
sities. The 𝐸𝑟𝑟Cycle is 14.01%, std=6.15% versus 16.00%, std=6.47%.
We observe that neither of the errors has a significant increase or
drop compared to that reported in Figure 12. These results demon-
strate that VocalHR is robust against time change and reveals the
permanence of the voice-heart modulation effect.

0 5 10 15 20
Normalized Error (%)

ErrRpeaks

ErrCycle

Voice w/ High HR Voice w/ Low HR

Figure 24: Longitudinal study of VocalHR in 100 days.

10 IMPLICATIONS AND FUTUREWORK
Emergency Healthcare. Cardiac health services are receiving
ever-increasing attention as the rising trend of cardiac disease in
various age groups. By enabling the voice-based cardiac activity
sensing, VocalHR makes an important step toward the telehealth
of the heart. The core benefit VocalHR brings is that it requires
no extra sensors. Any device carrying a voice-user interface can
be used as VocalHR’s front-end. The personalized VocalHR model
may be integrated into personal health records and shared with
the telehealth provider to reduce the difficulty of initial diagnosis.
As the research evolves, VocalHR may be used in an emergency
(e.g., emergency call) to retrieve the caller’s physiological status for
quick responses with no extra effort.
Affective Communication. In addition to receiving explicit com-
mands, VocalHR can endue VUIs with advanced affection-related
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functions, such as authentic emotion detection and speaking in-
tentions inference. Existing works roughly estimate the outward
expression of emotions from speaking content and tones, but users
may hide their emotions, and they differ largely in how to express
their emotions. Different from these works, VocalHR can be used
to detect the user’s inner feelings more precisely by monitoring
our obtained physiological signals. In this case, VUIs can help inter-
act with machines and people in a more efficient and satisfactory
manner. For example, VUIs would control smart home appliances
to respond to users’ current moods by adjusting the lighting condi-
tions or playing relaxed music automatically. The Advertisers can
learn customers’ authentic reactions instantly and recommend the
most suitable products.
Cardiac Phonetics VocalHR utilizes the heart activity information
modulated in the voice to enable heart sensing for VUIs. Consider-
ing human voices can be decomposed into smaller unit as phonemes
(e.g., vowel and consonant), a potential future work is to understand
the entropy of each phoneme in terms of heart information. With
this in-depth knowledge, more effective voice processing meth-
ods can be developed to enable different weights for phonemes
according to the targeted applications and further improve sens-
ing capacity. In addition, future works could investigate the heart
sensing capacity of voice through more fine-grained (e.g., under
different emotional conditions) and diverse (e.g., from heart disease
patients) data.
Fake Voice Detection. There has been a proliferation of publicly
available audio manipulation software to disguise one’s voice for
a variety of objectives from casual fun to safeguarding personal
privacy to evading voice biometrics applications and even spoofing
other individuals through deep audio fakes. VocalHR has the po-
tential to detect the fake voice by leveraging the extracted cardiac
properties. Specifically, we can feed the audio signal to VocalHR and
calculate the heart cycle duration and the timing of cardiac events
(e.g., R peaks). If these cardiac measurements are not within the
normal range, this audio can be regarded as a fake voice disguised
by software.

11 RELATEDWORK
11.1 VUI-based Biotraits
There is a long history of exploring the bio-information on voice-
user Interfaces (VUIs). The past 50 years have witnessed the great
success of biometric-based identification on VUIs (e.g., voice authen-
tication [42], and liveness detection [4]). Recently, voice interaction
is revealed to carry biotraits associated with a multitude of biologi-
cal processes. Tao et al. [43] proposed an ensemble learning-based
voice emotion recognition system working on real-world audio.
Zhou et al. [44] proposed a deep learning-based semi-supervised
approach to infer the emotion from voice and validated the pro-
posed approach on a large-scale Internet voice dataset. Inferring
speak intention from audio is discussed in a recent work [45]. In
addition, smartphone VUIs are explored to detect pathological con-
ditions, such as Parkinson’s disease [46] and COVID-19 [47]. Our
work shares the same vision as these previous studies and, for the
first time, brings cardiac activity sensing onto the pervasive VUIs.
It is worth noting that there are several pioneer studies [8, 48, 49]

exploring heart rate estimation from voice. They show the feasibil-
ity of cardiac activity sensing through VUIs. Our work differs as it
senses the intrinsic activities and events in each cardiac cycle utiliz-
ing the biological voice features and a data-driven reconstruction
model.

11.2 Non-contact Heart Activity Sensing
Current studies of non-contact heart activity monitoring rely on
sensing the vibration induced by heartbeats. An idea to get rid of
contact sensors on human body is to install vibration sensors on
human contact structures to indirectly sense the heart activity (i.e.,
semi-contact). Studies [50, 51] proposed to embed geophones into
bed for heart monitoring during sleep. Bonde et al. [52] enabled
heart monitoring for drivers by integrating accelerometer array
into car seats. To conduct fully non-contact heart sensing, Liu et
al. [53] leveraged Channel State Information (CSI) of WiFi signal
for heart rate estimation. Yang et al. [54] proposed to use Received
Signal Strength (RSS) as an indicator of heart rate. Zhao et al.[55]
developed an RFID-based non-contact heartbeat monitoring system
using the WiFi RSS phase. To sense fine-grained heart activity, later
studies utilized dedicated waveforms and higher frequencies to in-
crease sensing capability. A 2.4 GHz Doppler radar is used in [56] to
capture heart activity fiducial points. Ha et al. [26] proposed to use
77 GHz FMCW radar to capture chest displacement and estimate
seismocardiogram signal. Xu et al. [57] proposed a mmWave-based
scheme to generate electrocardiogram-like signals via heart elec-
tromagnetic field sensing. Besides, [58] utilized light reflection on
the face to sense the heart pump period. Differently, VocalHR is a
pervasive and low-cost heart sensing system built upon the voice-
user interfaces without additional hardware. Based on the heart
information modulated in voice, VocalHR is more robust to motion
interference and occlusion. Moreover, utilizing the pervasive phone
networks, VocalHR can work remotely on the callee side, thereby
requiring no internet or smartphone on the sensing end.

12 CONCLUSION
In this paper, we proposed the first voice-based pervasive cardiac
activity sensing system, VocalHR, to bridge cardiac health applica-
tions to the omnipresent voice-user interfaces (VUIs). We explore
heart activity’s impact on the voice production process and propose
the corresponding biological lung-larynx and pharynx VocalHR
features to describe the heart activities in the voices. Then, we
propose a novel cardiac activity reconstruction model that can de-
modulate the cardiac information from features and reconstruct
cardiac activities. We propose to use a discriminator with wavelet
decomposition to supervise the data-driven demodulator configu-
ration. Extensive experiments show the effectiveness of VocalHR
to sense cardiac activities from human voices.
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