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 A B S T R A C T

Ensuring medication adherence for Parkinson’s disease (PD) patients is crucial to relieve 
patients’ symptoms and better customizing regimens according to patient’s clinical responses. 
However, traditional self-management approaches are often error-prone and have limited 
effectiveness in improving adherence. While smartphone-based solutions have been introduced 
to monitor various PD metrics, including medication adherence, these methods often rely 
on single-modality data or fail to fully leverage the advantages of multimodal integration. 
To address the issues, we present an adaptive multimodal fusion framework for monitoring 
medication adherence of PD based on a smartphone. Specifically, we segment and transform 
raw data from sensors to spectrograms. Then, we integrate multimodal data with quantification 
of their qualities and perform gradient modulation based on the contribution of each modality. 
Afterward, we monitor medication adherence in PD patients by detecting their medicine intake 
status. We evaluate the performance with the dataset from daily-life scenarios involving 455 
patients. The results show that our work can achieve around 94% accuracy in medication 
adherence monitoring, indicating that our proposed framework is a promising tool to facilitate 
medication adherence monitoring in PD patients’ daily lives.

1. Introduction

Approximately 6.1 million people have been affected by Parkinson’s disease (PD) worldwide (GBD 2016 Neurology Collaborators, 
2019). Medications, as one of the effective treatment options, can relieve symptoms related to movement, voice, and tremors. 
Consistent medication adherence enables physicians to adjust treatment based on the patient’s clinical response effectively. In 
contrast, non-adherence—resulting from missed, mistimed, or extra doses—can worsen Parkinsonism symptoms (Malek & Grosset, 
2015). Studies show that significant medication non-adherence remains prevalent in patients with PD today (Grosset, Bone, & 
Grosset, 2005; Malek & Grosset, 2015). Several factors, including complex regimens and medical complications with PD, cause 
medication non-adherence to PD patients. 74.1% of patients reported lower adherence to the prescribed therapy (Radojević et al., 
2022), which ultimately increases the average annual rates of hospitalizations and ancillary care visits (Fleisher & Stern, 2013; 
Malek & Grosset, 2015).

Practical suggestions to improve medication adherence include communication, education, and engagement of other people 
in the therapeutic process, which can help patients understand the disease itself and the results of non-adherence (Straka, Minár, 
Gažová, Valkovič, & Kyselovič, 2018). Dosing devices (McDonald, Garg, & Haynes, 2002), such as reminders and pillboxes, and easier 
dosing regimens (Sesar, Arbelo, & del Val, 2011) are also helpful in improving adherence. In summary, the above methods mainly 
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rely on self-management. However, self-management is prone to errors due to patients’ forgetfulness and the difficulty in accurately 
assessing medication efficacy (Shin, Habermann, & Pretzer-Aboff, 2015). Furthermore, these methods cannot detect non-adherence 
promptly and alert patients to take medicines.

In recent years, mobile technologies have been increasingly used for symptom assessment (Baxter, Carroll, Keogh, & Vandelan-
otte, 2020; Omberg et al., 2022). For example, smartphone built-in sensors can be used to collect daily life activity data (e.g., gait, 
voice) for symptom assessment of PD in a passive and continuous way. Given that PD drugs can take effect within an hour and 
alleviate symptoms, it is feasible to use a smartphone-based symptom assessment approach to detect whether a PD patient has 
taken the drug and ultimately infer medication adherence.

Recent smartphone-based symptom assessment mainly has two directions. One direction is to use one dedicated sensing modality. 
For example, PDVocal (Zhang, Song et al., 2019) detects PD using non-speech body sounds. PDMove (Zhang, Xu et al., 2019) 
monitors medication adherence of PD patients using gait assessment (Mirelman et al., 2019). PDAssess (Yang et al., 2023) assesses 
the stage of PD patients using free-speech voice (Rusz, Cmejla, Ruzickova, & Ruzicka, 2011). These works only use a single sensing 
modality for analysis. However, a single modality cannot always make accurate estimates in all scenarios due to the limited 
information it represents. For example, PDMove (Zhang, Xu et al., 2019) has to train a personalized model for each PD patient 
using transfer learning due to the unreliability of the gait data. Another direction is to fuse multiple sensing modalities. For example, 
PDLens (Zhang et al., 2020) detects drug effectiveness using gait, voice, and balance data. However, they most rely on basic feature 
concatenation. In practice, the efficacy of a sensor may change due to unknown user and environment dynamics. Also, the symptoms 
of different patients may not exactly be the same for a single data source, such as gait. These factors make data from different 
modalities have different reliabilities. If sensor data fusion is performed without quantifying data quality, it may struggle to enhance 
performance when estimating fine-grained characteristics, particularly in clinical-level applications.

To address the above challenges, we propose an adaptive multimodal fusion framework for smartphone-based medication 
adherence monitoring of Parkinson’s disease. The framework takes data from multiple sensing modalities, performs data fusion 
with quantification, and monitors medication adherence based on the learning results from integrated data representations. First, 
the framework takes raw data from sensors as inputs, applies necessary filters to segment data, and transforms data segments into 
spectrograms for feature extraction. Second, the framework estimates the uncertainty of each modality using energy score (Liu, 
Wang, Owens, & Li, 2020) as the quality of data from each modality, integrates multimodal data with dynamic weights based on 
the estimated uncertainties, and performs gradient modulation based on the contributions of each modality to the final output. 
Finally, the framework detects whether PD patients take medicine or not to monitor medication adherence. With such quantified 
multimodal data integration, the framework can monitor the medication adherence of PD patients accurately with one general model 
for all PD patients.

We evaluate the framework on a dataset collected from PD patients’ daily life scenarios containing two data modalities: gait 
and voice. The dataset involves 455 patients. The framework achieves an average accuracy of 94.76% in medication adherence 
detection.

We conclude our contributions as follows:

• We design and implement an adaptive multimodal fusion framework for smartphone-based medication adherence monitoring 
of Parkinson’s disease. With such a framework, we can monitor the medication adherence of PD patients more accurately and 
avoid the burden of training personalized models for all patients.

• Our work is the first to monitor medication adherence of PD with quantified multimodal fusion. It is a general framework that 
can be adapted to arbitrary sensing modalities.

• We evaluate the framework with gait and voice modalities on the dataset collected from daily-life scenarios. The results show 
that the data fusion mechanism used in the framework is effective for multiple sensing modalities.

2. Methodology

In this section, we present the overview of the framework, which is shown in Fig.  1. We first apply a series of signal processing 
technologies on raw sensor data to obtain feature representations from each modality. Each data modality is transformed into 
spectrograms to preserve both time-domain and frequency-domain information. Despite being converted into a uniform format, the 
modalities exhibit distinct representations for the same stage of PD. Brute-force data fusion may get corrupted results. Therefore, we 
perform data fusion of all sensing modalities with quantification, which consists of uncertainty quantification and data integration 
based on the uncertainty. Finally, we monitor the PD patients’ medication adherence with the integrated multimodal classifier by 
detecting the medicine intake status of patients.

2.1. Data preprocessing

In this module, we collect data from different sensing modalities and preprocess data to extract high-fidelity feature representa-
tions of each modality. The data preprocessing basically consists of segmentation, transformation, and feature extraction.
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Fig. 1. The overview of our proposed framework.

Segmentation. The raw data collected directly from smartphone built-in sensors contains valuable information but is not imme-
diately suitable for analysis or learning. In this module, we segment data based on their properties for further processing. In this 
work, we use gait and voice data as examples.

Gait data is analyzed based on cycles because of the walking pattern of a human (Zhang, Xu et al., 2019). Before segmentation, we 
first use a zero-phase filter, a type of finite impulse response (FIR), to remove the high-frequency components from the acceleration 
data without phase distortion. The length of the filter is set to 219. The passband is set to the range of [0.75 Hz, 2.25 Hz] to 
eliminate irrelevant components to gait cycles given the average step frequency and speed of walking according to the previous 
studies (Bohannon, 1997; Grieve & Gear, 1966). Then, we identify each local prominence from the filtered raw data to extract gait 
cycles. The normalized amplitude of the acceleration data is applied due to the fact that each person’s amplitude value is unique.

The voice data is first partitioned into chunks with a duration of one second and zero overlapping rate. Then, we apply the 
Hanning window to each segment to reduce sidelobes.
Transformation. Both gait and voice data are transformed into spectrograms due to the ability to preserve features in both the 
time and frequency domains and their fitness to neural network input. Another FIR filter is applied to each gait segment to filter 
out components unrelated to PD patients’ walking activity and tremors. The passband is set to under 12 Hz, which is approximately 
the highest frequency of PD tremor (Deuschl et al., 2000). The short-time Fourier transform (STFT) is applied to each segment to 
generate spectrograms.

2.2. Data fusion with quantification

As aforementioned, basic feature concatenation may lead to unsatisfied results. The issue is more common for gait data as 
patients in the same stage of PD may have different behaviors and symptoms. Previous work shows that accuracy can drop to as 
low as 70.0% when the uncertainty in gait data is not accounted for Zhang et al. (2020). Multimodal fusion with such low-quality 
data can adversely affect the final prediction results. To integrate data effectively, we need to quantify the uncertainty of each data 
modality first. After that, we perform the late fusion by assigning dynamic weights, which are determined based on the assessed 
uncertainty of each modality’s input. Gradient modulation is then applied after each modality’s inputs are adjusted by the dynamic 
weights to further optimize the learning process.
Uncertainty Quantification: The uncertainties in the learning process of deep neural networks mainly fall into two categories: 
aleatoric uncertainty and epistemic uncertainty (Kendall & Gal, 2017). Aleatoric uncertainty represents noises that lie within 
the data, while epistemic uncertainty refers to the uncertainty in the model. In this paper, we focus on aleatoric uncertainty 
quantification, as epistemic uncertainty can be mitigated with sufficient data from PD patients.

We denote the training dataset as  = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1, where 𝑁 represents the number of samples in the dataset. Each 𝑥𝑖 represents 
inputs from different modalities as 𝑥𝑖 = {𝑥1𝑖 , 𝑥

2
𝑖 ,… , 𝑥𝑀𝑖 }𝑁𝑖=1 for 𝑀 modalities. In our proposed application, we use gait and voice as 

input modalities, thus making 𝑥𝑖 = {𝑥𝑔𝑖 , 𝑥
𝑣
𝑖 }

𝑁
𝑖=1. For each modality, 𝑓𝑚 represents the unimodal learning model for the 𝑚th modality. 

𝑦𝑖 ∈ {1, 2,… ,𝐻}, where 𝐻 is defined as the number of categories.
We use energy score (Liu et al., 2020; Zhang et al., 2023), which is a widely used metric for uncertainty quantification. The 

energy score represents the statistical distance between probability distributions and can be used to calculate the data density. The 
energy score can be calculated as: 

𝐸(𝑥𝑚𝑖 ) = −𝑇 𝑚 ⋅ 𝑙𝑜𝑔
𝐻
∑

𝑒𝑓
𝑚
ℎ (𝑥𝑚𝑖 )∕𝑇

𝑚
, (1)
3

ℎ



Smart Health 36 (2025) 100561C. Zhong et al.
where 𝑓𝑚
ℎ (𝑥

𝑚
𝑖 ), 𝑚 ∈ {𝑔, 𝑣} is defined as the output of the unimodal classifier 𝑓𝑚 for the category ℎ and 𝑇 𝑚 that originates from the 

energy-based model (Ranzato, Boureau, Chopra, & LeCun, 2007) is a parameter for each modality controlling how distinguishable 
the energy scores are between in- and out-of-distribution examples. A larger energy score means a more uniform distribution of the 
modality, indicating higher estimated uncertainty.
Uncertainty-driven Dynamic Data Fusion: With quantified uncertainty of each modality, we can integrate inputs from different 
modalities with confidence. Since the gait and voice impairment behaviors of PD patients vary, it is clear that the noise varies with 
different inputs. Therefore, the uncertainty of each input is different from that of the others, thus making dynamic weighting for 
each modality essential. The output after integration is calculated using uncertainty-driven fusion weighting: 

𝑓 (𝑥) =
𝑀
∑

𝑚=1
𝑚(𝑥𝑚𝑖 )

𝑚(𝑥𝑚𝑖 ), (2)

where 𝑊 𝑚 represents the function that calculates dynamic weights for modality 𝑚 and 𝑚 represents the output of each modality. 
The dynamic weights can be calculated as: 

𝑚(𝑥𝑚𝑖 ) = 𝛼𝑚𝑢𝑚(𝑥𝑚𝑖 ) + 𝑐𝑚, (3)

where 𝛼𝑚 and 𝑐𝑚 are the hyper-parameters that can be tuned for better fusion results, and 𝑢𝑚(𝑥) is the estimated uncertainty of the 
𝑚 modality. As mentioned before, we use energy score to estimate uncertainty. The dynamic weights are formulated as: 

𝑚(𝑥𝑚𝑖 ) = −𝛼𝑚𝑇 𝑚 ⋅ 𝑙𝑜𝑔
𝐻
∑

ℎ
𝑒𝑓

𝑚
ℎ (𝑥𝑚𝑖 )∕𝑇

𝑚
+ 𝑐𝑚. (4)

Since a higher energy score indicates a higher estimated uncertainty, 𝛼𝑚 is a negative number.
Additionally, the estimated uncertainty based on energy score is regularized using the sample-wise loss to enhance its 

quality (Zhang et al., 2023). First, the average training loss 𝜏𝑚𝑖  for 𝑇  epochs for 𝑚th modality is calculated after training for enough 
epochs. The estimated uncertainty is then regularized by learning the relationship between the average loss and the dynamic weight, 
ensuring that a higher average loss corresponds to a smaller dynamic weight. The regularization loss can be calculated as: 

𝑟𝑒𝑔 = 𝑚𝑎𝑥(𝑘(𝑤𝑚
𝑖 , 𝑤

𝑚
𝑗 )(𝜏

𝑚
𝑖 − 𝜏𝑚𝑗 ) + |𝑤𝑚

𝑖 −𝑤𝑚
𝑗 |, 0), (5)

𝑘(𝑤𝑚
𝑖 , 𝑤

𝑚
𝑗 ) =

⎧

⎪

⎨

⎪

⎩

1 𝑤𝑚
𝑖 > 𝑤𝑚

𝑗

0 𝑤𝑚
𝑖 = 𝑤𝑚

𝑗

−1 others.
(6)

The total loss of the multimodal fusion model is calculated as: 

 = 𝑓𝑢𝑠𝑖𝑜𝑛 +
𝑀
∑

𝑚=1
𝑚 + 𝜆𝑟𝑒𝑔 , (7)

where 𝑓𝑢𝑠𝑖𝑜𝑛 is the loss after dynamic fusion, 𝑚 is the loss of each modality before fusion, and 𝜆 is a hyper-parameter that controls 
the strength of the regularization. For spectrograms in our work, the losses are calculated using cross-entropy.
Gradient Modulation after Dynamic Fusion: The uncertainty-driven data fusion integrates data with consideration of their 
uncertainty. However, it does not measure the contribution of each modality after dynamic weighting. Inspired by recent 
works (Peng, Wei, Deng, Wang, & Hu, 2022), incorporating gradient modulation for each modality after dynamic weighting offers 
a practical solution. This is achieved by monitoring the discrepancy between their contributions to the final output. For gait and 
voice modality 𝑚 ∈ {𝑔, 𝑣}, the discrepancy ratio (Peng et al., 2022) 𝜌𝑚𝑡  for the 𝑡th epoch is calculated as: 

𝜌𝑔𝑡 =
∑

𝑖∈𝑁 𝑠𝑔𝑖
∑

𝑖∈𝑁 𝑠𝑣𝑖
, (8)

where 𝑠𝑔𝑖  and 𝑠𝑣𝑖  are scores that measure the contribution of gait and voice modality to the output of the fusion model. 𝜌𝑣𝑡  is defined 
as the reciprocal of 𝜌𝑔𝑡 . The scores are calculated as: 

𝑠𝑚𝑖 =
𝐻
∑

ℎ=1
1ℎ=𝑦𝑖 ⋅ 𝑆(

𝑚
𝑡 (𝑥

𝑚
𝑖 )

𝑚
𝑡 (𝑥

𝑚
𝑖 ))ℎ, (9)

where 𝑚 ∈ {𝑔, 𝑣} and 𝑆 is the softmax function. Given the contribution discrepancy between the gait and voice modalities, the 
gradient of each modality 𝑚 can be modulated as: 

𝑔𝑚𝑡 =

{

1 − tanh(𝛽 ⋅ 𝜌𝑚𝑡 ) 𝜌𝑚𝑡 > 1
1 others,

(10)

where 𝛽 is a hyper-parameter controlling the strength of modulation. With the gradient modulation, the modality contributing more 
to the output (𝜌𝑚 > 1) can be prioritized for further training, while modalities with higher noise levels remain unaffected.
4
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Fig. 2. The normalized confusion matrix of medicine-taking detection.

2.3. Medication adherence monitoring of PD

We implement the PD medication adherence monitoring application using the trained multimodal classifier by detecting whether 
the patient has taken medicine or not. It is a passive monitoring approach that only uses built-in sensors in the smartphone without 
active cooperation from patients. The patients need to register their medication schedule before monitoring starts. Then, our system 
passively collects the patient’s gait and voice data and detects medicine intake status using the multimodal classifier. Afterward, we 
can examine missed or extra doses by comparing our medicine intake detecting results with the patient’s medication schedule and 
ultimately infer medication adherence.

3. Evaluation

3.1. Experimental setup

3.1.1. Dataset
We use a PD dataset involving 455 PD patients (Bot et al., 2016). The gait and voice data are collected by smartphone either 

before or after patients take medicine. The labels belong to two categories: ‘‘before medicine’’ and ‘‘after medicine’’. We have 155289 
gait samples and 186095 voice samples. Gait and voice data with the same label within a day are paired as inputs of the multimodal 
learning process. After pairing, we have 97733 samples in total. 80% of the samples are used as training data and the rest 20% are 
used for testing.

3.1.2. Learning model implementation
The experiments are performed on an NVIDIA RTX A6000 GPU. Before data fusion, a ResNet-18 classifier is used to extract 

feature representations from spectrograms for each modality. To train a multimodal fusion model, we choose the SGD optimizer 
with 5e−4 initial learning rate, 1e−3 weight decay, and 0.9 momentum factor. The learning rate is reduced with 70 step and 0.3 
multiplicative factor of learning rate decay. We conduct the five-fold cross-validation to evaluate the performance of the framework.

3.2. Performance metrics

We use accuracy, precision, recall, and F1 score to evaluate the performance of medicine intake status detection. The label ‘‘after 
PD medication’’ is defined as the positive class.

3.3. Overall performance

Fig.  2 shows the normalized confusion matrix of medicine intake status detection. The 𝑋-axis is the ground truth, and the 𝑌 -axis 
is the prediction results of our model. Overall, the framework achieves 94.76% accuracy, 95.26% precision, 93.59% recall, and 
94.42% F1 score, which shows high medicine intake detection performance. The precision is higher than recall, showing that our 
model is more likely to predict a sample as ‘‘before medicine’’. One reason is that the efficacy of medicine may not be evident for 
some patients who have developed drug resistance.
5
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Fig. 3. The comparison of the accuracy of medicine intake detection between different genders.

Fig. 4. The comparison of the accuracy of medicine intake detection between different age groups.

Table 1
The comparison of the accuracy between different learning setups.
 Method Gait Voice Concat GM DW Our work 
 Accuracy (%) 59.21 89.04 88.94 92.00 93.96 94.76  

3.4. Performance in different demographic groups

We measure the model’s performance against different demographic groups, including gender, age, and onset year. There are 
65% male patients and 35% female patients. 87% of patients are under 75 years old, which is considered middle age. The rest are 
75 years old or over, considered old age. Onset year refers to the time between the first appearance of symptoms and the experiment. 
36% of patients’ onset years are less than or equal to three years, and 64% of patients’ onset years are greater than three.

Fig.  3 shows the comparison of the accuracy of medicine intake detection between different genders. The red line at the top 
of the box indicates the median. It shows that the model achieves 100% accuracy for more than half of the patients. The average 
accuracy for males and females is 93.74% and 92.56%, respectively. Our results implicate that gender is an independent biological 
factor.

Fig.  4 shows the comparison of accuracy between different age groups. The mean accuracy for middle-age and old-age patients 
is 93.31% and 94.37%, respectively. The result shows that our model can detect medicine intake status accurately for both middle-
age and old-age patients. The middle-age patients have more outliers. This may be because some middle-age patients have not 
unnoticeable symptoms that are hard to detected by the model.

Fig.  5 shows the accuracy comparison between different onset years of patients. The average accuracy of the two groups is 
93.78% and 93.14%, respectively. The result shows that the progress of the disease will not affect the accuracy of the medicine 
intake detection.

3.5. Ablation study

In this section, we evaluate the improvement contributed by each factor. Table  1 shows the average accuracy under different 
training setups. The details of different setups are listed as follows: Gait: Learning only with gait data; Voice: Learning only with 
6
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Fig. 5. The comparison of the accuracy of medicine intake detection between different onset years.

voice data; Concat: Learning with simple concatenation of gait and voice data; GM: Multimodal fusion with gradient modulation;
DW: Multimodal fusion using dynamic weights; Our work: Multimodal fusion with both gradient modulation and dynamic weights.

Because of its large uncertainty, the accuracy of learning only with gait data is under 60%. The accuracy of learning with simple 
concatenation is lower than that of learning with voice data, showing the influence of low-quality data in multimodal fusion without 
quantification. The results show that our work can better harness the potential of each data modality and gain more accurate results 
on medicine intake detection.

4. Conclusion

In this paper, we presented a framework for medication adherence monitoring of Parkinson’s disease with quantified multimodal 
fusion to better leverage the valuable information in each data modality. It works by preprocessing raw data from multiple sensing 
modalities, calculating dynamic weights based on uncertainty estimation, and applying gradient modulation to the dynamically 
integrated data. This approach enables accurate detection of medication intake status, which can help monitor the medication 
adherence of PD patients. The evaluation shows that our work can achieve better accuracy than existing methods.
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