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mmHand: Toward Pixel-Level-Accuracy Hand
Localization Using a Single Commodity
mmWave Device

Xiaoyu Zhang™', Zhengxiong Li
Hongfei Xue, Yingxiao Wu

Abstract—The hand localization problem has been a long-
standing focus due to its many applications. The task involves
modeling the hand as a singular point and determining its
position within a defined coordinate system. However, due to data
modality limitations, existing hand localization technologies face
several challenges. For example, vision-based localization raises
privacy concerns, while wearable-based methods compromise user
comfort. In this article, we introduce mmHand, a new device-free,
privacy-preserving dynamic hand localization system with pixel-
level accuracy, using a single commodity mmWave device. We
first propose a mmImage generation tool to fully extract spatial
information from raw mmWave data and introduce a novel 2-D
image-format representation of mmWave data. Next, we design
a framework that provides a new quality evaluation method and
pixel space labeling for the mmWave data. Finally, we present a
cross-modality spatial feature-enhanced model with high spatial
feature extraction capabilities, which can accurately localize hand
positions at the pixel level in the mmWave radar U-V pixel
coordinate system. We evaluate the system with experiments on
12 subjects in three scenarios, and the results across four metrics
demonstrate the effectiveness of our hand localization system.

Index Terms—mmWave sensor,
modality

hand localization, cross-

I. INTRODUCTION

AND localization has been widely applied in various
fields, including AR/VR, robotics, and gaming. Many
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Fig. 1. mmWave sensor receives signals reflected from the hand and
processes them for dynamic hand localization.

companies and organizations are actively developing accu-
rate hand localization methods based on two primary types
of human-computer interaction. The first is contact-based
hand localization, such as Meta Quest [1], which typically
requires a touch controller to determine the hand’s position.
However, contact devices are often seen as burdensome to
users, compromising the overall experience. The second type
is noncontact-based solutions, such as Ultraleap [2] and
MediaPipe [3], which use cameras to provide high-resolution
tracking in most environments. However, camera footage
in the hand localization process raises privacy concerns. In
contrast, RF sensors offer a privacy-preserving alternative as
nonvisual devices. Despite this advantage, most RF sensors
face challenges in achieving precise hand localization due to
their relatively low resolution.

Given the current challenges, mmWave radar, a type of
RF sensor, offers several advantages for hand localization
products: (1) high resolution: operating in the GHz band,
it provides millimeter-level accuracy; (2) fast response: it
can respond as quickly as a 500 FPS camera, allowing for
the localization of fast-moving hands; (3) privacy-preserving:
it doesn’t rely on vision-based signals; (4) integratable: its
compact size enables easy integration into mobile devices
for various applications; (5) device-free: utilizing frequency
modulated continuous wave (FMCW) technology, it detects
and localizes hands without requiring physical contact with
the device.

There are several approaches to hand localization using
mmWave sensors [4], [5]. However, existing methods struggle
to effectively extract the full information from mmWave data
and still rely on more complex and expensive mmWave devices
to localize the hand.

In this article, we propose mmHand to achieve pixel-
level accuracy in hand localization. As shown in Fig. 1, the
mmHand system utilizes the mmWave sensor to emit signals
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and capture their reflections from the hand, which are then
processed for localization. The development of our system
presented three key challenges: 1) the raw mmwave data
are time-sequence energy signals, which are fundamentally
different from image data, making it difficult to associate the
time-series signal with pixels. To address this, we develop
a mmlmage generation tool to convert raw mmWave data
into a new image format, correlating it with pixels; 2)
existing methods cannot label the image-formatted mmWave
data for hand localization model training, so we design a
cross-modality-based labeling method to efficiently gener-
ate accurate pixel-space labels; 3) current hand localization
models lack sufficient ability to extract high-quality spatial
features from the image-formatted mmWave data. To enhance
feature extraction, we connect the mmWave data with higher-
resolution depth images, leveraging the spatial features of
the depth images to guide mmWave hand localization model
training and improve feature extraction. Extensive experiments
demonstrate that the mmHand system performs well in hand
localization, and the enhanced model effectively extracts high-
quality spatial features.

In conclusion, our contributions are listed as follows.

1) We present a tool to generate a new image-format
representation of mmWave data, called mmImage. This
tool fully extracts the spatial information from the
mmWave data and associates the time-series data with
the pixel concept.

2) We design a new evaluation method for mmWave data
quality that focuses on spatial information and effec-
tively identifies low-quality data with indistinct spatial
details caused by interference.

3) Leveraging the data format similarity between the
mmlImage and synchronized depth images, we propose
a novel mmWave data labeling method that efficiently
provides accurate pixel-space labels for training image-
based task models.

4) We propose a cross-modality spatial-feature-enhanced
hand detection model based on the mmlmage. The
model utilizes the spatial feature similarity between
the mmImage and depth image to build an efficient
cross-modality connection, enhancing the spatial fea-
ture extraction of the mmlmage under the guidance
of the higher-resolution depth image. Additionally, our
spatial-feature-enhanced model can facilitate effective
interaction between all image-format data modalities
with similar spatial features.

5) We design an end-to-end hand localization system using
a single commodity mmWave device. It requires no spe-
cific sensor placement and can localize hand positions
from single-frame mmWave data. Extensive experiments
involving 12 subjects across three scenarios, using four
metrics, demonstrate the effectiveness of our proposed
hand localization system.

II. BACKGROUND
A. Depth Image Modality

The depth camera is a widely used sensor capable of
accurately measuring the distance between an object and
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Fig. 2. Example of a mmWave sensor with three transmitters (Tx) and four
receivers (Rx). (a) shows the antenna placement and spacing. (b) shows the
corresponding virtual.

the camera. Currently, three depth sensing technologies are
commonly employed in the depth cameras, which are outlined
below.

1) Structured light (e.g., Kinect VI and RealSense): This
type of depth camera emits invisible infrared lasers at
a specific wavelength and captures depth information
by analyzing distortions in the reflected encoded
pattern.

2) Stereo vision (e.g., Stereo IR 170 and ZED 2): This
depth camera captures two images of an object from
different viewpoints and calculates depth by measuring
the disparity between corresponding points in the two
images.

3) Time of Flight (e.g., Kinect V2 and SoftKinect): This
type of depth camera continuously emits laser pulses
toward an object and measures depth by calculating the
round-trip time of the reflected pulses.

Typically, the data format of a depth image is (W, H),

where VW and H represent the width and height of the image,
respectively.

B. mmWave Data Modality

Fig. 2 illustrates an example of a mmWave sensor with three
transmitting antennas (Tx) and four receiving antennas (Rx).
During each frame period, the mmWave sensor samples C
chirps of data using multiple-input multiple-output (MIMO)
technology, with each Tx sequentially emitting signals that
are received by all Rx in one chirp. The mmWave sensor
uniformly samples N signal points from each received Tx
signal by each Rx. Consequently, the format for one frame of
mmWave data is represented as (7, R,C,N), where T, R,
C, and N denote the number of Tx, Rx, chirps, and samples,
respectively.

Due to its high sampling rate, the mmWave sensor achieves
high-frequency resolution. Using FMCW technology, differ-
ences in frequency are converted into distance information, so
high-frequency resolution contributes to the sensor’s range res-
olution. Furthermore, the presence of the 2-D virtual antenna
array shown in Fig. 2 allows the mmWave radar to provide a
2-D spatial view for detecting object distances, akin to a depth
camera. This capability makes it feasible to establish a cross-
modality connection between mmWave data and depth images,
as both modalities share spatial information characteristics.
Details of the interaction between these two modalities are
presented in Section V.
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III. MMHAND SYSTEM FRAMEWORK

Fig. 3 provides an overview of the mmWave-based hand
localization system with pixel-level accuracy. The mmHand
system consists of four components: the mmlmage genera-
tion tool, pixel-space mmlImage labeling and cross-modality
hand detection model, and pixel-level hand localization.
First, we introduce mmlmage, a novel representation of
mmWave data that fully captures spatial information and
converts it into an image format. Second, we leverage
synchronized depth camera images to generate accurate
pixel-space hand location labels for the mmlmage. Third,
we establish a cross-modality connection between mmlIm-
ages and depth images, enhancing spatial feature extraction
for improved hand detection performance. Finally, we
develop a context-aware algorithm that mitigates inaccu-
rate predictions, ensuring precise and robust dynamic hand
localization.

IV. MMIMAGE GENERATION TOOL

In this section, we introduce the mmImage generation tool,
which converts a frame of raw time-series mmWave data
(T,R,C,N) into a new image-format representation called
mmlmage (W, H). As illustrated in Fig. 4, the mmlImage
generation process consists of five steps: 1) range FFT; 2)
MVDR data processing; 3) point cloud generation; 4) point
cloud filtering; and 5) 3-D point cloud projection. We will
describe each of these steps in detail.

A. Range FFT

When the mmWave sensor transmits an FMCW signal, it
propagates to multiple objects at different positions, resulting
in varying time delays in the received reflections. The range
FFT processes these time delays by converting them into
frequency peaks, effectively revealing the distance differences
between objects. After applying the range FFT, the raw
mmWave data (7, R, C, N) is transformed into the range bin
format (7, R,C, D), where D retains the same value as N
and represents the range dimension.

B. Minimum Variance Distortionless Response (MVDR)

As shown in Fig. 2(a), the mmWave sensor is equipped
with multiple transmitting and receiving antennas. Using
MIMO (multiple-input, multiple-output) technology, different
transmitting antennas operate in separate time slots, allowing
the receiving antennas to form a virtual antenna array, as
illustrated in Fig. 2(b). The 2-D spatial structure of this
antenna array enables the mmWave sensor to detect objects in
both the azimuth and elevation dimensions.

MVDR, also known as Capon Beamforming, is a valuable
tool in mmWave data processing. After obtaining the range
bins from the Range FFT step, we apply MVDR to combine
the azimuth and elevation information, generating range-
azimuth-elevation data (D, ®, ®) in the spherical coordinate
system, where ® and ® represent the azimuth and elevation
angles, respectively.
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TABLE I
OVERVIEW OF MMIMAGE GENERATION

Data type Next step Data format
Raw mmWave data Range FFT (T, R,C,N)
Range bin MVDR (T,R,C,D)
Range-azimuth-elevation data Pointcloud generation (D,0,9)
Pointcloud Pointcloud filter (D-©-2,(x,y,2,e))
Filtered pointcloud 3D pointcloud projection V-8, (z,y,2,€)
mmlImage w,

MVDR is a signal processing technique that enhances sig-
nals from the desired direction while suppressing interference
from others. In 3-D point cloud generation, MVDR enables
precise beamforming by dynamically adjusting the antenna
array to focus on specific directions. By capturing signals
from multiple angles, the system accumulates a dense set
of data points, resulting in a more detailed and refined 3-D
point cloud. This enhanced data density allows the MVDR
beamformer to generate a comprehensive and high-resolution
representation of hand regions and contours.

C. Pointcloud Generation

Compared to the spherical coordinate system, the 3-D
Cartesian coordinate system offers better spatial representation
and can more directly express an object’s spatial contour and
precise location. Additionally, the 3-D Cartesian coordinate
system has the advantage of being more easily associated with
the U-V pixel coordinate system, facilitating pixel-level hand
localization. Therefore, we convert the D-®-® points from the
range-azimuth-elevation data (D, ®, @) into the pointcloud
P={D -0 -9,(x,y,2z ¢€)) using (1). In this representation,
the second dimension consists of the point’s 3-D coordinates
(x,y,z) in the 3-D Cartesian coordinate system and the
corresponding energy e, with the origin of the system located
at the center of the mmWave sensor antenna array. However,
many of the points are not related to the object, so in the next
step, we apply a point cloud filter to refine the generated point
cloud and retain only the object-related points

X = rcos¢cosf
y =rcos¢sinf
z=rsin¢

reD,0e®,pe<d. @))

D. Pointcloud Filter

Due to signal attenuation, the received signal loses energy
as it propagates over longer distances. In hand localization,
since the hand is typically positioned close to the mmWave
sensor, points corresponding to the hand generally exhibit
higher energy. However, due to the resolution limitations of
the sensor, high-energy points from different objects, such
as the human trunk and hand—may become indistinguishably
mixed, leading to challenges in accurate segmentation and
localization.

To distinguish points from different objects, we use a clus-
tering algorithm to filter out points with high discrimination.
As outlined in Algorithm 1, we first sort the unprocessed
pointcloud P in descending order based on the energy e. For
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Algorithm 1 Pointcloud Clustering Algorithm

Input: unprocessed pointcloud set contains the 3D coordinate
and energy value P = (D-©-®, (x, y, z, €)), cluster center
number V, cluster size S

Output: processed pointcloud set G

1: sort P in descending order based on the energy e

2. fori=1,...,V do

3:  choose the first point p; in P

4:  calculate the distance of all the points to p; based on
the 3D coordinate (x, y, z) and get a distance set D;

5:  sort D; in ascending order
6: D; <— D;(1:5)

7: G <«— GuUD;

8: remove D; from P

9: end for

10: return G

each cycle 0 < i < V, the point with the highest energy is
set as the cluster center p;. In steps 4-6, we find the S nearest
points to the cluster center p; (including p; itself), and these
S points form a cluster with p; as the center. In steps 7-8,
we add the S points to the processed point cloud set G and
remove them from the unprocessed point cloud set P to ensure
they are not considered in subsequent clustering cycles. After
the clustering algorithm, we obtain a purified pointcloud G =
V-8, (x,y,z,e)) with V- S points.

E. 3-D Pointcloud Projection

As discussed in Section II-B, due to the spatial information
similarity between mmWave data and depth images, we
aim to establish a cross-modality connection between these
two data modalities to improve hand localization. Since the
3-D point cloud differs from the 2-D depth image in data
format, it is important to minimize the modality gap for
an effective cross-modality connection. As shown in Fig. 2,
the mmWave sensor’s virtual antenna array provides a 2-D
view on the antenna array plane, with the vertical axis
representing the depth value. Following the data generation
method used by depth cameras, we project the 3-D pointcloud
onto the antenna array plane, creating a 2-D image-format
representation of the mmWave data in the sensor’s coordinate
system. Finally, we discretize the data points in the image
and crop it to a fixed size (W, H), which we refer to as
mmlImage.
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TABLE II
SYMBOL DEFINITION AND DESCRIPTION

Symbol  Definition description

The number of the transmitting antennas
The number of the receiving antennas
The number of chirps per frame

The number of samples per chirp
The number of ranges

The number of azimuth angles

The number of elevation angles

The number of clusters per frame
The number of points per cluster

The width of mmImage

The height of mmImage

IOV ZOI

Table I details the steps involved in mmImage generation
along with the corresponding data format at each stage, while
Table II defines the symbols used in Table I. Fig. 5 presents a
comparative analysis of the raw mmWave data, the generated
mmlmage, and the corresponding depth image across three
distinct environments: a hall, a meeting room, and a corridor.
Each set of images corresponds to a different subject. As
illustrated in Fig. 5, our mmImage generation tool effectively
extracts spatial information from raw mmWave data and maps
it into pixel space, producing an mmImage that closely aligns
with the depth image captured by the depth camera.

V. MMIMAGE-BASED HAND LOCALIZATION

In this section, we introduce an mmlmage-based hand
localization system that fully leverages the spatial information
similarity between the mmImage and the synchronized depth
image. This system enables a new quality evaluation method
and a 2-D pixel space labeling approach for time-series
mmWave data, delivering high-accuracy, pixel-level hand
localization.
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mmlmage Depth image

Examples of the raw mmWave data, generated mmImage and synchronized depth image in three scenarios (Hall, meeting room and corridor).

A. mmWave Data Quality Evaluation

Due to the sensitivity of mmWave signals to environmental
interference and internal circuit deviations, the sampled raw
mmWave data can vary significantly, leading to differences in
the quality of the generated mmImages. To effectively evaluate
the mmWave data and filter out poor-quality data, we propose
a novel mmWave data quality evaluation method based on the
structural similarity index measure (SSIM)

(2papty + (kK11)?) (20 + (k2L)?))
(12 + 13+ (1 12) (02 + 07 + (aL)?)

The details of the SSIM calculation are based on (2), where
x and y are the two images being compared to calculate the
SSIM value. p, and py represent the pixel sample means
of the two images, crx2 and oy2 are the variances, and oyy is
the covariance. Additionally, L represents the dynamic range
of pixel values, and k; and k» are two constants, typically
set to ki = 0.01 and k; = 0.03 by default. In situations
where mmWave data are collected under poor conditions with
significant interference, object signals may be obscured by
environmental noise. In these cases, the mmImage generation
tool may struggle to effectively extract spatial information
from the noisy mmWave data, resulting in a low similarity
between the generated mmImage and the synchronized depth
image. This is captured by the SSIM metric. We compute
the SSIM value for all mmImages against their corresponding
synchronized depth images and classify mmImages with SSIM
values above a predefined threshold as high-quality data.

SSIM(x, y) =

(2

B. Pixel Space mmlmage Labeling

Due to the inherent representation of mmWave data as
a time-series energy signal, the signal at each time point
is a mixture of reflections from both the object and the
environment, making it impossible to label the object in the
raw mmWave data. As shown in Fig. 4, we propose a novel
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pixel-space mmlImage labeling method that quickly provides
accurate object labels for the mmWave data. This method
can be broadly applied to image-based tasks, such as object
detection and localization. The detailed labeling steps are as
follows.

1) First, the mmWave sensor and depth camera are posi-
tioned at a fixed relative distance to collect data.

2) Second, the mmWave data and depth images are syn-
chronized frame by frame using the timestamp.

3) Third, a pretrained object detection model is used to
detect the object in pixel space from the collected depth
images. The pretrained model can either be obtained by
training on a manually labeled depth image dataset or
by using a trained model from existing object detection
works.

4) Fourth, since the detected labels are in the depth cam-
era’s U-V pixel coordinate system and the mmWave
data are in the mmWave sensor’s coordinate system,
the detected labels must be transformed by multiplying
them with two transfer matrices (77 and 7>) to align the
coordinate systems.

5) Finally, each frame of the transformed label is used
as the object label for the synchronized mmlmage
generated from the raw mmWave data.

Since the new mmWave data labeling method is based on
the synchronized depth image, it is independent of differ-
ent mmWave data processing methods. The primary factor
affecting labeling accuracy is the synchronization deviation.
The transfer matrix 77, which converts the depth camera’s
U-V pixel coordinate system to its 3-D coordinate system,
depends on the camera’s internal fixed parameters. Similarly,
the transfer matrix 7>, which converts from the depth camera’s
3-D coordinate system to the mmWave sensor’s 3-D coordinate
system, depends on the relative distance between the two
sensors. In the experiment, we maintain a fixed relative
distance by placing the two sensors in specific locations on a
wooden board. As a result, both transfer matrices are linear
transformations with fixed parameters. We assume that these
linear transformations can be learned by the deep learning
model during training, enabling us to simplify the use of
untransformed labels in the experimental evaluation.

C. Hand Detection Module

After obtaining the labeled mmImage data, a deep learning
model is required to detect the hand from the mmlImage.
Due to its fast response and strong performance in object
detection [6], we use the Yolov3 model as our hand detection
model structure. However, despite the mmImage generation
tool effectively extracting spatial information from the raw
mmWave data, the inherent lower resolution of the mmWave
radar compared to cameras results in the mmImage having
lower data quality than a depth image. This limitation hinders
the mmImage-based model’s ability to extract effective spatial
features for hand detection. As shown in Fig. 6, we pro-
pose a cross-modality spatial-feature enhanced model, which
establishes a guidance interaction from the depth-image-based
model to the mmImage-based model. The depth-image-based

20805

model, a pretrained Yolov3 model with high hand detec-
tion accuracy, includes a feature encoder to extract effective
spatial features from the depth image. By introducing a
cross-modality loss function between the feature maps of the
mmlImage-based encoder and the depth-image-based encoder,
the mmImage-based model is guided to extract more effective
spatial features from the mmImage, leading to higher accuracy
in hand detection.

1) Cross-Modality Loss: To enhance the feature extraction
capability of the mmImage-based encoder, it is reasonable to
constrain it to extract feature maps of similar quality to those
produced by the depth-image-based encoder, considering their
spatial information similarity. Therefore, we design a cross-
modality loss function based on Cosine Similarity to guide the
training of the mmImage-based hand detection model.

After feeding the mmImage and synchronized depth image
into the mmImage-based encoder and the pretrained depth-
image-based encoder, both encoders extract feature maps
fi = REWH j — 1,2, where K, W, and H represent the
number of channels, width, and height of the feature map,
and j = 1 and j = 2 correspond to the feature maps of the
mmlmage-based encoder and the depth-image-based encoder,
respectively. Next, we reshape the feature map f/ into sets

- — —>

of row vectors F) = (v’i, vy, ..., Vi) and column vectors
F = (v/l, v’2 e, \/K,W) based on the width dimension W

and height dimension H, respectively. We then calculate the
overall feature map Cosine Similarity using (3) to measure the
spatial feature similarity between the two feature maps

(o ) (7

imilarity —
similarity 5
KH__ VW
AT =
. . |
cos(]—‘{:l, ]2:2) = ra I-; 2
KW ?T?E
RS =R
cos(]—“ﬁzl, ]-"£:2> = e Wi 2 3)
Finally, the cross-modality loss Lcross is calculated using (4).
Leross = 1 — similarity. 4)

2) Model Loss: In addition to using the cross-modality loss
Leross to enhance feature extraction, we apply another loss
function, Ligpel, during the training of the mmlmage-based
model for accurate hand detection. The model output includes
the location of a bounding box around the hand object and a
confidence value. The label loss Liape] consists of the bounding
box location loss Lppox and the confidence loss Leonf, as
defined in (5):

(&)

while aphox and acont represent the weights of Lypox and Leont,
respectively. The details of the label loss function can be found
in [7]. Thus, the total model loss function £ is the weighted
sum of the two loss functions, as shown in (6).

Liabel = Abbox * Lobox + conf * Leont

(6)

L = deross + Leross + tabel * Liabel
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Fig. 6.  Cross-modality spatial-feature enhanced hand detection model.

Algorithm 2 Context-based dynamic hand localization algo-

rithm.

Input: ¢/ consecutive frames of predicted hand loca-
tions Aj,As,...,Ay and corresponding confidences
confy, confa, ..., confy, the combined frame number W

Output: U/ consecutive frames hand locations O =
B1,Bs,...,By

1: initializes the output set O = ¢

cfori=1,...U d.o1 i

B = Ai-conﬁ—ﬁ—E%jBX-con]E;_.+V\5+x

con.f,'—t-EX:jconff#

add B; in O
end for
return O

(3]

[95]

,j=max(l,i —W)

AN AN

while across and ogape) represent the weights of Leposs and
Liabel, respectively.

D. Pixel-Level Dynamic Hand Localization

In hand localization, the hand is typically represented by
its center, so pixel-level dynamic hand localization involves
accurately identifying the hand center in pixel space. Since
the bounding box is a rectangular box that tightly encloses
the object, the center of the hand bounding box can be
used as the hand center. By applying the trained mmImage-
based hand detection model, we can localize the hand in
pixel space with a confidence value. However, environmental
disturbances and internal circuit deviations can reduce the
quality of the mmWave data, making some frames unsuitable
for hand localization. Additionally, due to model accuracy
limitations, the trained mmlImage-based model may fail to
accurately localize the hand in certain frames, even when the
data quality is good.

To address the challenges mentioned above, we designed a
context-based algorithm for accurate dynamic hand localiza-
tion, leveraging the continuity of hand movement. The details
of the dynamic hand localization algorithm are provided in
Algorithm 2. First, the mmImage-based hand detection model
predicts the hand bounding box for U consecutive frames,
where the center of each bounding box is set as the hand
center. The U predicted hand centers and their corresponding
confidence values are used as input for the algorithm. In step
1, we initialize an empty set to store the output hand centers.
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Fig. 7. TI 6843ISK-ODS and Kinect V2.

In steps 2-4, we calculate the hand center for each frame
using a weighted summation. Specifically, for the iy frame,
we compute a weighted sum of the iy, frame’s predicted hand
center location along with the output hand center locations
from the preceding WV frames (if fewer than VW frames are
available, we sum all previous i frames). We then divide this
sum by the total weight of all combined frames to obtain
the weighted average hand center location for the iy frame.
Additionally, each preceding frame’s weight in the i;, frame’s
localization is determined by the product of its confidence
and the time difference relative to the current frame, meaning
the hand center location of the current frame depends more
heavily on the most recent high-confidence frames. Finally,
the algorithm outputs the hand center locations for the U/
consecutive frames.

In summary, the mmHand system is comprised of three
key components: the mmImage generation tool, cross-modality
hand detection, and pixel-level dynamic hand localization.
Initially, the mmlImage generation tool captures spatial
information from raw mmWave data and converts it into pixel
space. The generated mmImages are then used to train a
hand detection model that benefits from improved feature
extraction. Lastly, a context-aware algorithm is employed to
overcome challenges related to inconsistent data quality and
model detection bias, ultimately achieving precise, pixel-level
dynamic hand localization.

VI. EVALUATION
A. Experiment Preparation

1) TestBeds: As shown in Fig. 7(a), we use the TI
IWR6843ISK-ODS mmWave radar for data sampling, con-
nected to the TI DCA1000EVM board for data transmission.
The radar has 3 transmitting antennas (Tx) and 4 receiving
antennas (Rx). Each transmitting antenna emits its signal in an
assigned time slot using MIMO technology, and the signal is
received by the four receiving antennas for further processing.
We set the number of chirps C per mmWave frame to 64, with
256 samples per chirp. Additionally, as shown in Fig. 7(b), we
use the Kinect V2 depth camera to collect depth image data.
The camera operates at a 30 FPS frame rate, with a depth
image resolution of 512 by 424 pixels.

2) Data Collection and Labels: As shown in Fig. 8, 12
volunteers (eight males and four females) are asked to move
one hand freely in front of the mmWave sensor and the Kinect
depth camera in three different scenarios: Hall, Meeting Room,
and Corridor. These scenarios collectively represent a wide
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Fig. 8. Three data collection scenarios: hall, meeting room and corridor
(from left to right).

Bof o> e

Fig. 9. Six basic hand gestures.

Thumbs up Peace sign Okay Four Palm open

TABLE 111
NUMBER OF SUBJECTS AND SYNCHRONIZED FRAMES IN
EACH OF THE THREE SCENARIOS

Scenario Subjects  Frames number
Hall 12 4089
Meeting room 12 4284
Corridor 12 3766

range of real-world applications for hand localization. The hall
scenario covers large, open spaces, such as auditoriums, testing
the system’s ability to handle wide-area coverage. The meeting
room represents medium-sized, enclosed environments like
offices, where multipath interference from surrounding objects
(e.g., chairs, tables and people) challenges the system’s hand
localization in cluttered settings. The corridor scenario simu-
lates narrow, confined spaces like hallways, where more severe
environmental interference occurs. Together, these scenarios
ensure the system’s robustness across diverse spatial condi-
tions.

In each scenario, we collect five sets of left-hand data
and 5 sets of right-hand data for each subject, with each
set comprising 20 s of hand movement. To ensure a variety
of hand gestures, volunteers are asked to perform six basic
hand gestures. As shown in Fig. 9, these gestures include: fist,
thumbs up, peace sign, okay, four, and palm open. During data
collection, subjects stand at random distances from the radar
(within a 2-m range) and move freely, adjusting their speed
and transitioning between gestures. The combination of three
scenarios, six gesture variations, and varying distances and
movement speeds reflects the diversity and unpredictability
of real-world environments, ensuring the system’s robustness
and effectiveness across different conditions. We preserve the
timestamps of both the mmWave data and depth images during
data collection and synchronize the two data modalities based
on the timestamps. The synchronized mmWave data are then
converted into the mmlImage format for training the hand
detection model. Additionally, a pretrained hand detection
model [8] is used to label the mmImage in pixel space through
the mmWave labeling method described in Section V-B. The
number of subjects and synchronized labeled mmImages in
each scenario are listed in Table III.
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3) Model Setting: We use YOLOvV3 as the base hand
detection model due to its proven effectiveness in real-time
object detection and its ability to extract robust spatial features
from mmImages, outputting hand bounding boxes along with
confidence values. To ensure high-quality data input, we set
the SSIM threshold to 0.2. This threshold is determined based
on the observation that compared to synchronized Kinect depth
images, mmImages with an SSIM below 0.2 introduce stronger
noise and degrade model performance. Only mmImages with
SSIM values exceeding this threshold are included in the
training process to enhance data reliability. For the loss
function, the weights for cross-modality loss and label loss
are both set to ocross = 1 and oape) = 1, respectively. These
values are chosen after testing various weight combinations,
where equal weighting provided the best balance between
maintaining consistency across modalities and ensuring accu-
rate label supervision. We randomly select 80% of all subjects
for training, with the remaining 20% reserved for testing. This
split maximizes the training data while preserving a sufficient
test set to evaluate generalization. The model is trained for 100
epochs with a batch size of 8, chosen to balance GPU memory
constraints and training stability. The initial learning rate is
set to 1073, and reduced to 3 x 107° using a cosine annealing
strategy. This learning rate schedule is chosen after comparing
it with step decay and exponential decay, with cosine annealing
yielding smoother convergence and improved final accuracy.
The mmHand system is implemented using PyTorch, and all
training is conducted on a TITAN Xp GPU. This hardware
setup allows for efficient model training while maintaining
flexibility for hyperparameter tuning.

B. System Comparison and Performance Metrics

1) System Comparison: In the experiments, we evaluate
three different system structures.

KinectSys (Benchmark): KinectSys is a system that includes
a hand detection model trained on Kinect depth images. Due
to the high resolution of these images, KinectSys achieves
high accuracy in hand detection and is robust across various
scenarios. It serves as the benchmark for measuring the feature
extraction capabilities of other systems.

mmlmageSys (Baseline): mmlImageSys has the same struc-
ture as KinectSys, but the hand detection model is trained on
mmlmage data. It serves as the baseline for evaluating the
basic performance of mmlImage data in hand localization.

mmHand system: The mmHand system is our proposed
hand localization system, sharing the same structure as
KinectSys and mmlImageSys, but incorporating a cross-
modality connection to KinectSys to enhance feature
extraction in the mmImage. The system parameter settings are
outlined in Section VI-A3.

2) Performance Metrics: We use the following four metrics
to evaluate the performance of our proposed hand localization
system.

Leross (Cross-Modality  Loss):  As introduced in
Section V-C1, Lgoss measures the inverse of the feature
map similarity between two hand detection models trained
by mmImage and Kinect depth images, respectively. Given
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the high hand detection accuracy of the model trained by
Kinect depth images, it excels at extracting high-resolution
features. The feature map similarity evaluates the mmImage
model’s ability to extract similarly high-resolution features as
the Kinect model.

o2 (Attention Map Variance): Variance o2 is a metric
used to measure the concentration of a model’s attention
map [9], [10], with higher variance indicating a more scat-
tered attention map. Given an attention map with dimensions
(W, H), it can be represented as a binary function f(x,y),
where x and y are the two dimensions, with 0 < x < W and
0 <y < H. The variance o2 is calculated using (7)

, DML (B2 4+ 0 —)) S5 y)
2)‘(4;02)17—[—0}(()6’ y)

2

o

(7

where X = [E;V:Ozfzox-f(x,y)/zjiozfzof(x,y)] and y =
[Eio;;[:o%f(x» y)/E}LOZf:Of.(x, )1, and (%,y) represents
the weighted center of the attention map.

Average Precision (AP): AP is a commonly used metric for
measuring the accuracy of object detection [11], [12], [13]. It
is defined as the area under the precision-recall curve, where
precision and recall are calculated based on True Positive
(TP), False Positive (FP), and False Negative (FN) values.
To determine whether a detection is classified as TP, the IoU
(Intersection Over Union) metric is used. IoU quantifies the
overlap between the predicted hand bounding box and the
labeled hand bounding box, and is mathematically defined
as the ratio of the intersection area (overlapping region) to
the union area (combined area of both boxes), given by
IoU = (Area of Overlap/Area of Union). An IoU value of 1.0
indicates a perfect match, while 0.0 means no overlap. A
predefined IoU threshold is set, where detections with an IoU
above the threshold are classified as TP, while those below are
considered FP.

Average Pixel Error (APE): APE is a distance error metric
used to measure the accuracy of hand localization [14]. We
calculate APE by averaging the Euclidean distance between
the predicted hand center and the labeled hand center over
a continuous period. Given the high accuracy of the Kinect
model, we use it to provide the groundtruth hand center
locations.

C. System Factor Analysis

1) High-Resolution Feature Extraction: As shown in
Fig. 6, we apply the cross-modality loss on the feature map to
guide the mmImage-based model in extracting high-resolution
features similar to those of the pretrained hand detection
model using Kinect depth images (i.e., KinectSys). In this
section, we evaluate the effect of the cross-loss constraint in
model training by comparing the average cross loss Lcross
values on the testing dataset. As shown in Table IV, our
mmHand system demonstrates a superior feature extraction
ability compared to mmImageSys. The extracted feature map
has a data format of (K, W, H), where K, W, and H represent
the number of channels, width, and height, respectively. We
average the feature map along the channel dimension K and
visualize the averaged feature map for comparison. As shown
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mmlImageSys
(Baseline)

KinectSys
(Benchmark)

mmHand system

5 5
(b) (c)
Fig. 10. Example of the feature map visualization results for the three
systems: (a) mmImageSys, (b) our mmHand system, and (c) KinectSys.

TABLE IV
COMPARISON OF HIGH-RESOLUTION FEATURE EXTRACTION ABILITY
BETWEEN MMHAND SYSTEM AND MMIMAGESYS (BASELINE)
(0 < Lcross <1, WHERE LOWER L¢rgss INDICATES BETTER

PERFORMANCE)

System Type Scenario Leross
mmHand system Hall 0.335

mmlImageSys Hall 1.46
mmHand system  Meeting room 0.321

mmlImageSys Meeting room 1.73
mmHand system Corridor 0.356

mmlImageSys Corridor 3.27

TABLE V

COMPARISON OF FEATURE ATTENTION ABILITY BETWEEN MMHAND
SYSTEM AND MMIMAGESYS (0 < ¢2 < 65025, WHERE LOWER o2
INDICATES BETTER PERFORMANCE)

System Type Scenario a?
mmHand system Hall 1092
mmlmageSys Hall 1580
mmHand system  Meeting room 546
mmlImageSys Meeting room 1837
mmHand system Corridor 353
mmImageSys Corridor 683

in Fig. 10, the feature map from the mmHand system closely
resembles the feature map from the KinectSys, demonstrating
the effectiveness of the cross-loss constraint in improving
feature extraction.

2) Feature Attention: Apart from improving high-
resolution feature extraction, our cross-modality loss also
guides the hand detection model to focus on specific feature
areas. As shown in Table V, we compare the feature attention
ability of hand detection models in two systems (i.e., mmHand
system and mmImageSys) on the testing dataset. Our mmHand
system has lower o2 (Attention Map Variance) compared
to mmlmageSys, indicating that the attention map from
our mmHand system is more focused and demonstrates
better feature attention ability. Additionally, we visualize the
feature attention maps of the two systems and KinectSys.
As shown in Fig. 11, the visualization results further confirm
the effectiveness of our cross-modality loss in improving the
system’s feature attention ability.

3) Hand Detection Results: With improved high-resolution
feature extraction and feature attention abilities, the mmImage-
based model achieves more accurate hand detection. We
compare the AP performance of the proposed mmHand system
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TABLE VI
COMPARISON OF AP RESULTS BETWEEN MMHAND SYSTEM AND MMIMAGESYS ACROSS THREE SCENARIOS
(0 < AP <100%, WHERE HIGHER AP 1S BETTER)

System Type Scenario APy 5 APy.a APy 3 APy.2 APy 1

mmHand system Hall 2996% 38.04% 46.97%  54.13%  59.51%

mmImageSys Hall 15.35% 21.13%  26.93%  34.69%  43.03%

mmHand system  Meeting room  21.77%  33.38% 43.70% 57.06%  67.75%

mmImageSys Meeting room  15.77%  26.85%  35.18%  43.87%  56.74%

mmHand system Corridor 21.58%  30.87%  46.74%  57.06%  70.65%

mmImageSys Corridor 20.11% 28.10% 38.70%  49.28%  60.88%

mmImageSys Hand svst KinectSys TABLE VII

(Baseline) mmiand system (Benchmark) COMPARISON OF APE RESULTS BETWEEN MMHAND SYSTEM AND

(a) (b) (c)

Fig. 11. Visualization of the feature attention maps for the three systems:
(a) mmImageSys, (b) our mmHand system, and (c) KinectSys.

Comparison of hand trajectories between groundtruth and system predictions
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Fig. 12. Example of a pixel-level hand localization result comparison.

Blue points represent the groundtruth. In the left figure, green points show
the predicted hand centers from the proposed mmHand system, while in
the right figure, green points represent the predicted hand centers from the
mmlImageSys system.

and mmImageSys across five different IoU thresholds (ranging
from 0.5 to 0.1 in steps of 0.1). As shown in Table VI,
the mmHand system outperforms mmlImageSys in all three
scenarios, demonstrating the superiority of our cross-modality
spatial-feature enhanced model for hand detection.

4) Pixel-Level Hand Localization: To evaluate the accu-
racy of our hand localization system, we sample 200
consecutive frames during six hand movement periods from
each of the 12 subjects and use our mmlImage-based hand
localization system to predict hand locations. As discussed
in Section VI-B2, we use the predicted hand center from
KinectSys as the groundtruth due to its high accuracy. We then
calculate the APE for all subjects in each scenario. As shown
in Table VII, the accuracy of our mmHand system is higher
than that of mmImageSys. Additionally, Fig. 12 visualizes an
example of a hand localization period, clearly demonstrating
that the mmHand system achieves more accurate pixel-level
dynamic hand localization.

MMIMAGESYS ACROSS THREE SCENARIOS (0 < APE < +/2, WHERE
LOWER APE Is BETTER)

System Type Scenario APE
mmHand system Hall 0.265
mmImageSys Hall 0.425
mmHand system  Meeting room  0.146
mmlImageSys Meeting room  0.584
mmHand system Corridor 0.145
mmlmageSys Corridor 0.157

D. System Impact Factors

1) Radar-Hand Distance: As the distance increases, the
reflected signal strength weakens, reducing detection accuracy.
In this section, we evaluate the impact of radar-hand distance
on hand localization performance. Specifically, the subject
stands at six different distances from the mmWave sensor,
ranging from 0.6 to 1.6 m in 0.2 m increments. At each
distance, we collect 200 consecutive frames over three hand
movement periods, maintaining a constant movement speed of
0.2 m/s. Using the mmImage-based hand localization system
to predict hand positions, we observe in Fig. 13(a) that the
system’s APE increases with distance, demonstrating that
shorter radar-hand distances improve localization accuracy.

2) Hand Movement Speed: Hand movement speed can
influence the hand localization system because faster
movements can lead to motion blur in the radar signal, making
it harder for the system to accurately track hand positions.
To evaluate this impact on the proposed mmHand system,
the subjects stand 0.6 m from the mmWave sensor and move
their hand at three different speeds (0.2, 0.4, and 0.6 m/s).
For each speed, we collect 200 consecutive frames over
three hand movement periods to test the system’s localization
performance. As shown in Fig. 13(b), the APE increases with
movement speed, demonstrating that faster hand movement
reduces localization accuracy.

3) Hand Size: Theoretically, hand size can influence the
hand localization system, as larger hands reflect more radar
signals, resulting in a stronger and clearer signal for the system
to process. In contrast, smaller hands may produce weaker
reflections, making accurate detection and localization more
challenging. However, since the range of hand size variation is
relatively small [15], its overall impact is minimal. Typically,
hand size is measured by hand length, defined as the distance
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Fig. 13.  Experimental results for system impact factors. (a) APE performance versus radar-hand distance. (b) APE performance versus hand movement

speed. (c) APE performance versus hand size.

from the tip of the middle finger to the base of the hand [16].
To assess the impact of hand size on our mmHand system, we
collect hand movement data from three subjects with different
hand lengths (15.5, 17, and 18.5 cm). For each hand length,
we record 200 consecutive frames over three hand movement
periods to evaluate the system’s localization performance. As
shown in Fig. 13(c), the APE performance remains relatively
consistent, indicating that hand size has little effect on the
hand localization performance of the mmHand system.

Based on the experimental results of the three system impact
factors, although radar-hand distance and hand movement
speed influence system performance to some extent, the low
APE ensures that the mmHand system remains viable for many
real-world applications [17], [18], [19].

VII. DISCUSSIONS

A. System Latency Analysis

We use the Intel Xeon CPU E5-1620 v4 @ 3.5 GHz to
process the mmWave sensor data, while an Nvidia Titan XP
is deployed for hand localization model predictions. The data
format for each collected frame is set as (7, R,C,N) =
(3,4, 64,256). The time cost for each component of the
mmHand system is presented in Table VIII, with the total
system latency being approximately 0.1 s, which is sufficient
for most real-time applications. Additionally, the data process-
ing component of the system can be further accelerated in two
areas.

First, the number of chirps per frame C is related to the
velocity resolution. Reducing C will not affect the spatial reso-
lution of the mmWave sensor, but it can decrease the mmWave
data size and accelerate mmImage generation. However, too
few chirps can lead to instability in mmImage generation, so
balancing C is essential for achieving real-time performance in
the mmHand system while maintaining localization accuracy.
Second, in the mmlImage generation tool, MVDR generates
range-azimuth-elevation data in the format (D, ®, @), where
D ranges up to 10 m. In practice, if the human object is too
far from the mmWave sensor, the reflected signal will have

TABLE VIII
MMHAND SYSTEM LATENCY ANALYSIS

Model detection
0.02s

Data collection
0.03s

Data processing
0.05s

low energy and be heavily affected by environmental noise.
Additionally, several works have demonstrated coarse-grained
localization of objects from the range bin (7, R, C, D), which
serves as the input to MVDR [20], [21], [22]. Therefore, it is
feasible to add an object range detection module to filter out
data outside the object’s distance range, significantly reducing
the time cost of MVDR.

B. mmHand for Future Applications

Multihand Localization: Currently, our current mmHand
system is capable of dynamically localizing a single hand with
various gestures. However, with advancements in resolution
and feature attention enabled by cross-modality learning, there
is potential to classify and localize multiple hands from the
generated mmImages [23], [24]. In future work, we plan to
explore multihand localization using the mmHand system
in simple scenarios, such as two hands from one or two
individuals moving without overlap.

Hand Pose Recognition: Since the generated mmlImage
has high spatial information similarity with the synchronized
depth image, it is possible to extract coarse-grained hand
contour features from the mmlmage, which can be used
for hand pose recognition. To date, many super-resolution
methods have been developed to improve object recognition
accuracy [25], [26], [27]. In the future, we plan to integrate
these methods into our mmHand system to achieve accurate
hand pose recognition.

Occlusions: Due to the inherent penetration ability of
mmWave signals [28], [29], mmWave sensor can detect
objects behind occlusions, whereas vision-based cameras lose
functionality in such conditions. However, occlusion causes
significant signal attenuation, making the received signal
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more vulnerable to environmental interference. Additionally,
the material structure of the occlusion can induce phase
shifts in the received signal, both of which negatively
impact mmWave data quality. In the future, we will further
investigate how different occlusions affect data quality and
apply our mmHand system for hand localization in occluded
environments.

C. mmHand for Industry Applications

In addition to future research directions, the mmHand
system has significant potential for industrial applications,
particularly in environments where traditional camera-based
systems face limitations. Below, we discuss three example use
cases:

Quality Inspection in Manufacturing: Camera-based
systems in the manufacturing operation line often fail when
lenses are obscured by dust or grease. For instance, in food
processing plants, workers frequently interact with machinery
to adjust settings or sort items on a conveyor belt. Over time,
airborne grease particles or fine food dust can accumulate
on camera lenses, significantly blocking the camera from
detecting and localizing hands accurately [30], [31]. This
can lead to system failures in detecting wrong operations
during production, thus making the product of bad quality.
The deep learning approach can mitigate the impact of
interfering substances to some extent through data-driven
model training [32], [33], [34]. However, the complex and
dynamic nature of the manufacturing environment, along with
the diverse sources of interference, poses significant challenges
for model training [35], [36], [37]. In contrast, the mmHand
system operates using the mmWave signal to penetrate
these contaminants, ensuring reliable hand localization. This
robustness reduces downtime for cleaning and maintenance,
making mmHand particularly suitable for continuous operation
in contaminated environments [38], [39]. Additionally, the
privacy-preserving nature of mmWave signals ensures that
sensitive operation processes remain secure [40].

Sterile Environments in Healthcare: In healthcare, particu-
larly in operating rooms or intensive care units, maintaining
sterility is critical [41], [42]. For example, during a surgi-
cal procedure, surgeons often need to interact with medical
devices without physically touching them to avoid contam-
ination. Camera-based systems in such settings may fail
due to condensation on the lens from the operating room’s
humid environment or blood splatters obstructing the camera’s
view [43], [44]. The mmHand system, however, operates
effectively under these conditions because mmWave signals
are unaffected by visual obstructions. Moreover, the mmHand
system’s penetration capability allows it to function even
through thin surgical drapes or plastic covers, which are
commonly used to maintain sterility [45], [46]. Additionally,
mmWave radiation operates within the nonionizing spectrum,
with energy levels significantly lower than those of X-rays or
CT imaging systems, posing no known health risks to patients
or medical staff [47]. These attributes make mmHand a safe
and effective solution for enhancing precision and efficiency
in sterile surgical environments.
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Harsh Conditions in Mining or Heavy Industries: Mining
operations or heavy industries present challenging con-
ditions, including high levels of dust, vibration, and
debris [48], [49], [50]. In these environments, the ability
of mmHand to penetrate through obstructions and maintain
accuracy makes it a reliable tool for remote control of heavy
machinery [51]. With its compact form factor (millimeter-level
antenna size) and low power consumption (within 5 mW [52]),
the mmHand system is well-suited for integration into wear-
able edge devices that enable real-time control of machinery
in mining environments. For instance, in underground mining,
workers often operate machinery in low-visibility conditions
due to airborne dust particles. The camera-based hand local-
ization system doesn’t work as the lens becomes obscured by
dust [53]. In contrast, the mmHand system remains unaffected
by such obstructions, ensuring accurate hand tracking and
control of machinery.

VIII. RELATED WORK

Cross-modality Learning: Cross-modality learning is an
effective method to combine the advantages of different
data modalities, leading to improved performance. Currently,
fusion and guidance are the two primary approaches in cross-
modality learning technologies [54], [55], [56], [57], [58],
[59]. In the fusion approach, features extracted from different
data modalities are combined to enhance the performance
of specific model tasks [60], [61], [62], [63]. For exam-
ple, Xue et al. [64] introduced a DeepFusion model that
integrates features from different sensor modalities along
with cross-sensor correlations, improving performance in IoT
applications. Shuai et al. [65] proposed a lightweight mmWave
sensor and camera fusion system for more robust object detec-
tion, using mmWave sensor to address lighting issues and RGB
images to enhance model accuracy. In contrast, the guidance
approach enables a high-quality data modality to guide fea-
ture extraction from a lower-quality modality [66], [67], [68].
Cai et al. [69] developed a cross-modality interaction between
depth images and RGB images, improving the encoder’s
ability to extract more precise depth information from RGB
data. Zhao et al. [70] used RGB data to guide RF signal
model training, effectively improving human pose estimation
from RF signals. Unlike these works, our mmHand system
explores a more efficient cross-modality learning approach by
investigating a new image-format mmWave data representation
for deeper integration between depth images and mmWave
data.

Hand Localization Sensor Systems: Hand localization has
been a widely studied problem for several years, with var-
ious technologies explored to achieve accurate localization
using different data modalities [46], [71], [72], [73], [74],
[75]. For example, Liu et al. [76] presented a dynamic
hand localization and gesture recognition system based on
RGBD video, which provides rich visual information but
raises privacy concerns and requires sufficient and stable
lighting conditions. Baldi et al. [77] developed a sensing
glove with wearable sensors, such as IMU, ECG, and EMG,
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TABLE IX
ADVANTAGES OF MMWAVE DATA COMPARED TO OTHER DATA MODALITIES

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 12, 15 JUNE 2025

Data modality Technology

Advantages of the mmWave modality

Radio signal

WiFi, RFID and Bluetooth

Higher resolution

Acoustic signal

Microphone and Speaker

Not affected by sound pollution

Camera image RGB and depth image

Privacy-preserving and light-free

Ultrasound Ultrasonic

Lower price and smaller size

‘Wearable sensor data IMU, ECG and EMG

No accumulated error, better user comfort
and no battery capacity limitation

which ensures accurate tracking but may cause user dis-
comfort due to sensor placement and battery limitations.
Wang et al. [78] proposed WiTrace, achieving centimeter-
level passive hand localization using WiFi signals, though it
necessitates dense WiFi deployments. Chen et al. [79] imple-
mented a smartphone-based prototype using acoustic signals
to locate hand positions, which avoids occlusion issues but
is susceptible to environmental sound pollution. Additionally,
Mclntosh and Fraser [80] utilized ultrasonic waves for hand
tracking, offering an alternative approach but facing challenges
related to high costs and large device sizes. Table IX highlights
the advantages of mmWave data compared to other data
modalities [45], [81]. Unlike existing hand localization tech-
nologies that rely on specific sensor placements or complex
data processing algorithms, our mmHand system provides
privacy-preserving, device-free hand localization without these
requirements.

IX. CONCLUSION

In this article, we introduce mmHand, a novel hand local-
ization system that achieves pixel-level accuracy using a single
commodity mmWave radar. The system requires no specific
sensor placement and can accurately predict dynamic hand
locations in pixel space. A new mmlmage generation tool
is designed to fully extract spatial information from raw
mmWave data and represent it in pixel space. Additionally,
the system introduces innovative methods for quality eval-
uation and pixel space labeling of time-series mmWave
data. Leveraging the spatial information similarity between
mmWave data and camera depth images, the system also
features a cross-modality spatial-feature enhanced model for
more accurate pixel-level hand localization. Experiments with
12 subjects across three different scenarios, using four metrics,
demonstrate the efficiency of our mmHand system in hand
localization.
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