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 A B S T R A C T

Mental health intervention can help to release individuals’ mental symptoms like anxiety and 
depression. A typical mental health intervention program can last for several months, people 
may lose interests along with the time and cannot insist till the end. Accurately predicting user 
dropout is crucial for delivering timely measures to address user disengagement and reduce 
its adverse effects on treatment. We develop a temporal deep learning approach to accurately 
predict dropout, leveraging advanced data augmentation and feature engineering techniques. 
By integrating interaction metrics from user behavior logs and semantic features from user 
self-reflections over a nine-week intervention program, our approach effectively characterizes 
user’s mental health intervention behavior patterns. The results validate the efficacy of temporal 
models for continuous dropout prediction.

1. Introduction

Mental health intervention is a therapeutic approach to improve psychological well-being and address various mental health 
disorders (Ybarra & Eaton, 2005). Mental health intervention program typically lasts for months or years, which begins with 
foundational modules and incrementally advances to more complex ones over time (Gimba et al., 2020). According to a report, user 
dropout rate of the intervention programs can range from 25% to 56% (Ybarra & Eaton, 2005), which largely reduce the overall 
effectiveness. While session-based incentives and email reminders are commonly used to improve retention, these approaches lack 
the ability to promptly detect early signs of disengagement. Early identification of user disengagement is essential to implement 
timely measures to address dropout, which can reduce its adverse effects on treatment outcomes. Building on this, automatic and 
efficient dropout prediction strategies are crucial for success of mental health intervention.

At the beginning, dropout prediction is used in online education platforms  (Dalipi, Imran, & Kastrati, 2018; Jeon & Park, 2020) 
to identify disengaged students and improve course completion rates. Bremer, Chow, Funk, Thorndike, and Ritterband (2020) 
extended dropout prediction to digital health Intervention programs. They proposed a machine learning framework that uses a 
fixed-size feature matrix to model user behavior over time. However, this approach relies on fixed-length features, which often 
overlooks the temporal dynamics of user behavior. By treating time-series data as static inputs, it becomes less effective at capturing 
how user engagement develops and changes.  Zantvoort, Scharfenberger, Boß, Lehr, and Funk (2023) studied different machine 
learning models, e.g., support vector machine (SVM), long short-term memory (LSTM), BERT, and text representations such as term 
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Fig. 1. System overview.

frequency-inverse document frequency (TF-IDF) and word embeddings for predicting dropout in digital mental health programs. 
However, their results were limited by a small sample size, and advanced models did not perform better than simpler ones, even 
with data augmentation. Although Large Language Models (LLMs) have excellent performance in data analysis in many areas, due 
to concerns about personal information privacy, the critical factor in healthcare, they may not be the optimal choice. LLMs are more 
vulnerable to data leakage through black-box extraction, inference, and reconstruction attacks (Lukas et al., 2023), and based on 
existing research, the larger the language model, the more vulnerable it becomes to data extraction attacks  (Carlini et al., 2021). 
In contrast, traditional machine learning models provide better control and transparency regarding data handling, significantly 
reducing privacy risks, and their smaller scale makes them far less vulnerable than LLMs.

We learn the lessons from the previous works and develop a continuous dropout prediction framework, specifically tailored 
for our Mellowing Mind study—a mobile mental health intervention program designed for the African American community. This 
9-week program is delivered through a smartphone app, where users complete different modules each week. For example, users 
need to watch different kinds of mindfulness videos and practice in daily life. Users are encouraged to perform self-reflection (Chen, 
Chang, & Stuart, 2020) by recording their happy events and unhappy events in our app.

We collect user interaction data with our app in the back end. First, we extract features from the heterogeneous interaction data, 
including user engagement metrics, sentiment trends, and emotional dynamics, which capture both static and evolving behavioral 
insights. Next, we adopt time-series modeling to effectively represent the temporal dependencies and cumulative trends in user 
behavior. Leveraging temporal models such as LSTM, BiLSTM, and GRU, we achieve high predictive performance, with AUC 
exceeding 0.95 and balanced accuracy surpassing 0.92 over a 5-fold cross validation. This approach not only ensures accurate 
dropout predictions but also supports timely interventions to enhance user retention and the overall success of mental health 
intervention programs (see Fig.  1).

2. Mellowing mind study

Our study has received approval from the University’s Institutional Review Board. Our clinical team designs standard inclusion 
and exclusion criterias to recruit subjects from the African American community. 49 subjects are enrolled in our study. Among them, 
71.5% are black or African American, 22.4% are White, and 6.1% are Asian. They are aging from 20 to 84 years old.

Subjects are asked to attend our mobile mental health intervention program, which is delivered through a smartphone app 
available on Google Play. Before the program, we host online training sessions to provide step-by-step guidance on how to use the 
app. Our intervention program lasts for 9 weeks, consisting of eight weekly sessions and an introductory session. Each weekly session 
features instructional videos and audio content, including guided meditations and practical, interactive suggestions for incorporating 
mindfulness into daily life. Participants are also encouraged to monitor their daily mood and record self-reflections on positive or 
negative events, as well as their personal insights and progress in mindfulness practice. All their interaction data with the App are 
recorded anonymously in the back end.

3. Feature engineering

It is crucial to extract effective features from heterogeneous and dynamic user interaction data with our app. In this section, we 
detail the feature engineering process.

3.1. Semi-structured behavior feature

In the mental health intervention program, users need to watch different kinds of mindfulness videos and practice in daily life. 
To quantify users’ video-watching behaviors, we extract weekly features based on their interaction with mindfulness practice videos 
and audio content, as recorded through semi-structured screen-touch data. Specifically, the calculation features include activity 
completeness, pause duration, and a satisfaction index (ranging from ‘‘very calm’’ to ‘‘very stressed’’) for each mindfulness training 
video. These features are further analyzed to determine their weekly averages, standard deviations(STD), and rates of change(slope). 
Furthermore, we characterize behavioral patterns by calculating the most frequent starting times, engagement frequency, and time 
variability in users’ interactions with these videos throughout the week. In total, we obtain 20 behavior features each week.
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3.2. Unstructured self-reflection feature

Self-reflection on pleasant and unpleasant events is encouraged in the mental health intervention program. User self-reflections 
are recorded as unstructured text. From these data, we extract weekly features to capture sentiment trends and emotional dynamics. 
Specifically, we extract three types of features presented as follows.

3.2.1. Basic lexical and semantic features
Basic lexical and semantic feature analysis can provide an overview of the fundamental characteristics of the text (Pustejovsky, 

Bergler, & Anick, 1993). Therefore, we extract lexical and semantic features, such as word counts and part-of-speech frequencies 
(e.g., nouns, verbs, adjectives) from each instance of self-reflection data. These features reflect the general structure and complexity 
of the language, and metrics such as word frequency offer insight into the richness and level of engagement of the content.

3.2.2. Emotional features
Emotional features offer critical insights into the affective states expressed in user reflections, helping to evaluate mental 

engagement and well-being (Uban, Chulvi, & Rosso, 2021). Accordingly, we compute the following features.
Sentiment Polarity: Sentiment polarity scores (Loria et al., 2018) range from −1 (negative sentiment) to +1 (positive sentiment). 
The polarity score 𝑃polarity is calculated as: 

𝑃polarity =
∑𝑛

𝑖=1 𝑆(𝑤𝑖)
𝑛

. (1)

where 𝑆(𝑤𝑖) represents the sentiment score of the 𝑖th word, and 𝑛 is the total number of words in the text. Emotion Distribution:
Emotion probabilities are derived using the pre-trained transformer model  Distilbert base uncased go emotions 
student(Demszky et al., 2020). The probability ranges from 0–1 for each selected emotion. For an input 𝐱, the probability of 
emotion 𝑒𝑗 is computed as:

𝑃 (𝑒𝑗 |𝐱) =
exp(𝐖𝑗𝐡 + 𝑏𝑗 )

∑𝐾
𝑘=1 exp(𝐖𝑘𝐡 + 𝑏𝑘)

,

where 𝐡 is the hidden state of the model and 𝐾 represents the total number of categories of emotions. This analysis enables tracking 
emotional evolution over time.

3.2.3. Engagement features
Engagement features are useful for evaluating user consistency over time (Zhou & Bhat, 2021), highlighting regularity or 

variability in engagement that may indicate potential dropout risks. We calculate engagement features based on user’s active time 
points on doing tasks in our app.

3.3. Feature aggregation and calculation standards

To summarize features and maintain temporal properties, we further calculate the mean, standard deviation, and slope of the 
extracted features over a week. These measures help quantify the central tendency, variability, and trends of user behaviors, 
providing a comprehensive view of the dynamics of engagement. To ensure temporal consistency among users, we standardized 
all features in a weekly aggregated format.

3.4. Feature matrix summary

We extract a total of 48 features, as outlined in Table  1, categorized into six domains. Mindfulness Video-watching behavior (14 
features), After-Mindfulness Satisfaction (3 features), Engagement and Activity Strength (3 features), Lexical and Semantic analysis (7 
features), Emotion Variances (14 features) and Emotion Trends (7 features). These features provide a comprehensive representation 
of user behavior, emotional states, and engagement consistency. By aggregating data weekly using mean, standard deviation, and 
slope calculations, the unified feature matrix effectively integrates both video-watching behavior features and self-reflection features. 
This structured approach captures patterns over time, offering a reliable foundation for accurate and meaningful dropout predictions.

4. Prediction model

The weekly aggregated feature matrices in our study show strong temporal characteristics. Capturing these dynamic features is 
essential to achieve our prediction goals. Fei and Yeung (2015) employed temporal models such as vanilla RNN and LSTM on a 
weekly aggregated dataset for online student dropout prediction, demonstrating that RNN-based temporal models have significant 
potential for continuous dropout prediction tasks. Based on this finding, we selected LSTM, GRU, and biLSTM (Dey & Salem, 
2017; Graves & Graves, 2012; Zhou et al., 2016). We also incorporated a customized negative weight loss function to address 
the unbalanced data set to process the temporal dependencies within our weekly feature matrices.
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Table 1
Summary of extracted features.
 Category Feature name Description  
 Mindfulness 
video-watching behavior

Active percentage, study day std, completeness 
percentage, completeness mean, completeness 
std, completeness slope, wasted mean, wasted 
std, wasted slope, comment count, comment 
date std, ets mct, ets mct frequency, ets time 
diff

Features related to user activity levels, task 
completion, and time efficiency. They 
capture weekly trends, variability, and 
overall participation consistency.

 

 After-mindfulness 
satisfaction

Satisfaction mean, satisfaction std, satisfaction 
slope

Weekly satisfaction levels, variability, and 
trends over time, reflecting user feedback 
on the intervention.

 

 Engagement and activity 
strength

Activity strength mean, activity strength std, 
activity strength slope

Metrics capturing the mean, variability, and 
weekly trends of activity levels, reflecting 
user engagement strength.

 

 Lexical and semantic 
analysis

Word count mean, noun count mean, verb 
count mean, adj count mean, spelling error rate 
mean, sentiment mean, sentiment std

Text-based features derived from weekly 
comments, including word usage, sentiment 
analysis, and spelling error rates, providing 
linguistic and sentiment insights.

 

 Emotion variance Anger mean, anger std, sadness mean, sadness 
std, joy mean, joy std, relief mean, relief std, 
disgust mean, disgust std, optimism mean, 
optimism std, neutral mean, neutral std

Aggregated emotional metrics capturing 
mean and variability for 7 selected 
emotions, representing a broad spectrum of 
typical emotional states during the 
intervention. These emotions were chosen 
for their relevance and interpretability in 
understanding user behavior.

 

 Emotion trends Anger slope, sadness slope, joy slope, relief 
slope, disgust slope, optimism slope, neutral 
slope

Weekly trends in 7 selected emotional 
states, providing insights into temporal 
changes in users’ feelings over the 
intervention period.

 

Table 2
Model performance comparison (5-fold average).
 Model Accuracy Balanced Acc. Precision Recall F1 Score AUC TNR FPR NPV F1-Negative 
 LSTM 0.9901 0.9184 0.9908 0.9987 0.9948 0.9565 0.8379 0.1621 0.9807 0.8926  
 BiLSTM 0.9896 0.9211 0.9910 0.9980 0.9945 0.9399 0.8442 0.1557 0.9734 0.8942  
 GRU 0.9855 0.8815 0.9868 0.9981 0.9924 0.9405 0.7649 0.2351 0.9741 0.8257  

The customized loss function is a weighted binary cross-entropy loss designed to handle the class imbalance by assigning three 
times more weight to negative samples than to positive samples. The loss for each sample is defined as: 

 = 1
𝑁

𝑁
∑

𝑖=1

[

−𝑤𝑝𝑜𝑠 𝑦𝑖 log(𝑦̂𝑖) −𝑤𝑛𝑒𝑔 (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖)
]

. (2)

where 𝑦𝑖 is the true label (𝑦𝑖 ∈ {0, 1}), 𝑦̂𝑖 is the predicted probability (0 < 𝑦̂𝑖 < 1), 𝑤𝑝𝑜𝑠 is the weight for positive samples and 
𝑤𝑛𝑒𝑔 = 3 ⋅ 𝑤𝑝𝑜𝑠 is the weight for negative samples in our experiment settings. This loss function ensures that the model pays more 
attention to negative samples to mitigate the effects of the imbalance of the data set.

Based on previous work (Fei & Yeung, 2015), we selected LSTM as our baseline due to its excellent performance on time-
series data. Furthermore, we incorporated two variants of LSTM: Gated recurrent unit (GRU) and bidirectional long-short-term 
memory (biLSTM), given their complementary strengths to different prediction requirements. GRU has a simplified architecture 
with reduced computational complexity that offers efficiency advantages for smaller datasets while maintaining strong temporal 
modeling capabilities. BiLSTM, with its ability to capture bidirectional information, provides a more comprehensive understanding 
of sequential dependencies. By comparing these three models, we aim to identify the most suitable architecture for our dataset, 
balancing prediction accuracy and computational efficiency.

5. Evaluation

5.1. Data preparation

The data preparation process includes missing value handling, feature engineering, data augmentation, and temporal aggregation 
to construct a cohesive dataset for model evaluation. Missing values are dealt with zero-padding techniques. To enrich the dataset, we 
applied well-designed data augmentation techniques: semi-structured log data were augmented using combination and permutation 
strategies (Wang et al., 2024), while self-reflection textual data used large language models and translation tools to generate 
semantically consistent variants (Ding et al., 2024).
4 
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Fig. 2. Confusion matrix for BiLSTM.

The aggregated weekly characteristics were consolidated into uniform nine-week time step matrices to capture temporal patterns 
of user behavior. The dataset was structured such that each time step represented an accumulation of features from previous weeks, 
with labels assigned based on the dropout status of the subsequent week.

For instance, the first time step (week 0) was labeled according to dropout occurrence in the first week, while the second time 
step (weeks 0–1) was labeled based on dropout in the second week, and so forth. This approach resulted in cumulative datasets of 
dimensions 48 × 1, 48 × 2, . . . , 48× 𝑛, where 𝑛 varied from 1 to 9, reflecting the number of weeks aggregated. To standardize input 
for model training, any missing entries in datasets with dimensions smaller than 48 × 9 were filled with zeros, ensuring that all 
feature sets were consolidated into a uniform size of 48 × 9.

5.2. Implementation

We utilized RNN-based models (LSTM (Graves & Graves, 2012), BiLSTM (Zhou et al., 2016), GRU (Dey & Salem, 2017)) with a 64-
size hidden layer and 9-time-step sliding windows, Each entry contains 48 features. Derived from the cumulative week segmentation 
strategy, our dataset has 404,000 positive samples and 25,000 negative samples. For each fold, around 308,000 positive samples 
and 21,000 negative samples were used for training, while 96,000 positive samples and 4000 negative samples were designated for 
testing. The models were trained for 20 epochs using the Adam optimizer (learning rate: 0.001) and a batch size of 32.

5.3. Evaluation metrics

We assessed the model using 5-fold cross-validation with a comprehensive set of metrics: accuracy, balanced accuracy, F1 score, 
and area under the curve (AUC). To explore the model’s performance on negative samples, we emphasized metrics such as, and 
true negative rate (TNR), false negative rate (FPR), Negative Predictive Value (NPV), F1-Negative ensuring a thorough evaluation 
of the model’s ability to correctly identify negative instances. To further explore the robustness and generalization of our models, 
we also analyzed the accuracy in different demographic groups such as gender, marital status, and education level.

5.4. Results and analysis

Based on the results shown in Table  2, BiLSTM demonstrated the best overall performance over the three models, achieving the 
highest balanced accuracy (0.9211) and TNR (0.8442), proving it to be particularly suitable for tasks that prioritize high accuracy, 
especially when working with unbalanced datasets. Fig.  2 futher showns the confusion matrix for BiLSTM.

Figs.  3, 4, and 5, indicate that gender and level of education have a minimal impact on accuracy. The model has consistent 
performance across these demographic groups. However, marital status exhibited significant variability in accuracy, with groups such 
as ‘‘Separated’’ and ‘‘Divorced’’ showing relatively lower performance. These categories may involve more complex or unpredictable 
emotional dynamics and features. Future work could focus more on designing refined strategies that target marital groups to 
implement more robust predictive models.
5 
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Fig. 3. The impact of gender on dropout prediction.

Fig. 4. The impact of marital status on dropout prediction.

Fig. 5. The impact of education level on dropout prediction.
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